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Graph Definition
• A graph has a set of vertices  and a set of edges.


• Directed edges are pairs  with 


• Undirected edges are two-sets  with 


• A graph with directed edges is called a directed graph


• A graph with undirected edges is just called a graph

V

(u, v) u, v ∈ V

{u, v} u, v ∈ V



Graph Definition
• Graphs are represented 

by:


• drawing the vertices 
as small circles


• drawing the edges as 
edges


• Directed edges are 
drawn as arrows

An undirected graph with 7  
vertices and 7 edges

A directed graph



Graph Definition
• Computer scientist sometimes differ from mathematicians 

in what is called a graph


• In Mathematics, a(n undirected) graph can 


• Have only one edge at most between two vertices


• Cannot have an edge to the same vertex



Graph Definition
• Computer scientist sometimes differ from mathematicians 

in what is called a graph


• In Mathematics, a directed graph can 


• Have only one edge at most between two vertices


• Cannot have an edge to the same vertex



Graph Definition
• Mathematicians call a graph that allows multiple edges 

between the same pair of vertices 


• a multigraph



Graph Representations
• To understand graphs, we can use:


• The visual representation


• E.g. The neighbor graph


• Take a political map



Graph Representations
• Examples:


• Place a vertex in 
every entity 
(state, not DDFF)


• Connect vertices 
if the entities have 
a common border



Graph Representations
• Vertices are stations


• Edges represent a 
connection via 
underground or light rail


• This is multi-graph 
because several edges 
can connect a station



Graph Definition
• Different visualizations can still give you the same graph, 

as you can see from the examples below

a

b

c

d

f

e

ga

b

c

d f

e

g

ab, ac, bc, ce 
cd, cf, de, df 
ef, eg, fg 



Graph Definition
• Two graphs are isomorphic, if there is a renaming of the 

vertices that converts one into the other and vice versa


• Mathematically, a renaming is a bijection


• These two do not look the same, but they are 
isomorphic:  a → b, b → c, c → e, d → d, e → a

a

b c

d e

b e

c

d a



Graph Definition
• Two graphs are isomorphic, if there is a renaming of the 

vertices that converts one into the other and vice versa


 is isomorphic to   


                                        


G = (V, E) G′ = (V′ , E′ )

⇔
∃f : V → V′  bijection  : ∀v1, v2 ∈ V : ( f(v1), f(v2)) ∈ E′ ⇔ (v1, v2) ∈ E



Graph Definition
• Determining whether two graphs are isomorphic is a 

known, difficult question


• Some results are easy, e.g. vertices of the same rank 
(the number of edges adjacent to a vertex) need to be 
mapped to vertices of the same rank


• So, these two graphs cannot be isomorphic



Graph Definition
• These two graphs cannot be isomorphic


• The left graph has two vertices of degree 2


• The right graph has no vertices of degree 2


• But the number of vertices and edges is equal



Graph-Definition
• Vertex degree: Number of edges incident to a vertex


• Vertex degree vector: Made up of vertex degrees of all 
vertices


• Handshake Lemma: The sum of vertex degrees is twice 
the number of edges


• Proof: Each edge contributes twice to the sum of the 
vertex degrees


• Number of odd vertices (vertex degree is odd) is even



Graph Representations
• An adjacency list


• For every vertex the list of 
vertices to which there is an 
edge

a

b

c

def
g

h

i j

a: b,e,f,i 
b: a,c,i,j 
c: b,d,g,j 
d: c,e,g,h 
e: a,f,d,h 
f: a,e,h,i 
g: c,d,h,j 
h: d,e,f,g 
i: a,b,f,j 
j: b,c,g,i



Graph Representations
• An adjacency matrix


• square matrix 
conceptually labeled 
with vertices


• coefficient 

ai,j = {1  edge between vi and vj

0  otherwise

a

b

c

def
g

h

i j

a b c d e f g h i j
a 0 1 0 0 1 1 0 0 1 0
b 1 0 1 0 0 0 0 0 1 1
c 0 1 0 1 0 0 1 0 0 1
d 0 0 1 0 1 0 1 1 0 0
e 1 0 0 1 0 1 0 1 0 0
f 1 0 0 0 1 0 0 1 1 0
g 0 0 1 1 0 0 0 1 0 1
h 0 0 0 1 1 1 1 0 0 0
i 1 1 0 0 0 1 0 0 0 1
j 0 1 1 0 0 0 1 0 1 0



Number of Vertices and 
Edges

• Graph  with vertices  and edges 


• Whether directed or undirected, graph can have as 
many edges as there are pairs of vertices


• The latter is 


• Number of edges is at most 

G = (V, E) V E

( |V |
2 ) =

|V | ( |V | − 1)
2

O( |V |2 )



Number of Vertices and 
Edges

• Graph  with vertices  and edges 


• Graph algorithms usually need to look at each edge at 
least once


• there are some idiosyncratic exceptions


• They usually run in time at least 


• However, many important graphs are sparse:


• No edge between most pairs of vertices

G = (V, E) V E

Θ( |V |2 )



Graph Definitions
• There are a number of important properties of graphs


• No need to learn them by heart, the ones used in CS 
will get repeated over and over again


• A path between two vertices  of a graph 
 is a list of vertices 

 such that there is an 
edge between all  and 


• Furthermore, no vertices can be repeated

u, w ∈ V
G = (V, E)
u = v0, v1, …, vn−1, vn = w

vi vi+1



Graph Definitions
• Example for a path:


• Has length 5 (number of 
edges)


• Example for a walk that is not 
a path 


• We visit the center vertex 
twice



Graph Definitions
• For directed graphs, the paths need to follow the arrow



Graph Definitions
• A directed graph (digraph) is strongly connected if there is 

a path from every vertex to every other vertex



Graph Definitions
• An undirected graph is connected if there is a path from 

every vertex to every other vertex


• This is not a connected graph


• But it consists of two connected components



Graph Definitions
• Interesting question


• Is the friends graph on facebook connected


• The "friend" relation is mutual, so all users are vertices 
and there is an edge if two users are in a friends-relation


• Probably not, because we signed up my mom on 
facebook and she did not like it, so she is no longer 
friends with anyone


• But how about "active users"


• Could there be a republican and a democratic facebook


• No, but maybe there are isolated groups



Euler Tours
• An Euler tour is a closed tour that traverses each edge of 

the graph only once.


• Graphs with an Euler tour are called Eulerian


• Theorem: An undirected, connected graph is Eulerian if 
each vertex has even degree.


• Recall: Degree is the number of edges of the vertex



Euler Tours
• Königsberg bridge problem


• Königsberg had seven bridges over the river Pregel


• Is it possible to have an afternoon walk crossing all bridges 
exactly once



Euler Tours
• Solved by Euler


• Translate into a multi-graph (multiple edges allowed)

A

B

C

D

a b

c d

e

f

g



Euler Tours
• Actually, all edges have odd degree, so such a tour is not 

possible


• To show that the theorem is correct:


• Euler tour exists implies all vertex degrees are even


• Because an Euler tour visits all edges and every time 
it visits an edge, it needs to come and to go.

Vertex

First visit

Vertex

Second visit

etc.



Euler Tours
• Other direction can be shown using Fleury's algorithm 

• Key observation: 


• If we remove the edges from a closed tour 


• (starts and ends at the same vertex)


• then in the remaining graph all vertices have still even 
degree 



Euler Tours
• Fleury's algorithm:


• Start at a node and walk anywhere, marking the edge


• Leave the node that you arrived at


• Continue until you can no longer find an unused edge


• At this point, you are back in the starting vertex


• If any of the vertices visited has a unused edges, start 
with that edge until you are back at that edge.


• Splice the new circuit into the old one



Euler Tours
• Example



Euler Tours
• Start at a random vertex



Euler Tours
• Make a tour

1
2

3

4
5

6
78



Euler Tours
• Check for vertices with unused edges and pick a random 

one

1
2

3

4
5

6
78



Euler Tours
• Start out creating a random circuit of unused edges

1
2

3

4
5

6
78

2.1
2.2

2.3

2.4



Euler Tours
• Pick another vertex with unused edges

1
2

3

4
5

6
78

2.1
2.2

2.3

2.4



Euler Tours
• Start a new part of the circuit


• Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 
8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

1
2

3

4
5

6
78

2.1
2.2

2.3

2.48.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8



Euler Tours
• In the new circuit, there are still vertices without all edges 

used.


• Pick one


• Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 
8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

1
2

3

4
5

6
78

2.1
2.2

2.3

2.48.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8



Euler Tours
• And after this, we are done


• Circuit is: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3, 
8.4, 8.5, 8.5.1, 8.5.2, 8.5.3, 8.5.4, 8.5.5, 8.5.6, 8.5.7, 8.5.8 
8.6, 8.7, 8.8

1
2

3

4
5

6
78

2.1
2.2

2.3

2.48.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.5.1

8.5.2 8.5.3

8.5.4 8.5.5 8.5.6

8.5.78.5.8



Hamiltonian Circuit
• Similar question:  Is there a circuit that goes through all 

vertices



Hamiltonian Circuit
• Turns out to be very difficult


• Can be shown to not be decidable with a polynomial 
time algorithm



Graph Definitions
• Distance in a graph:


• Length of the shortest path between two vertices


δ(u, w) = min{n |∃v0 = u, v1, …vn = w such that (vi, vi+1 ∈ E ∀i ∈ {0,...,n − 1}}



Dĳkstra's Algorithm
• Want to determine the distance between a vertex  and all 

other vertices in an undirected graph


• Dynamic programming algorithm


• Add intermediate vertices one by one


• Start:  Every vertex not  gets distance infinity


•  gets distance 0


• Put all vertices into a priority heap ordered by distance


• We can quickly extract a vertex with minimum 
distance

s

s

s



Dĳkstra's Algorithm
• Example:

s a

b

c

f

d

e

i

g

h

inf

inf inf

inf inf inf

inf inf

inf

0



Dĳkstra's Algorithm
• Update :


• Give all neighbors of  distance 1


•

s

s

s a

b

c

f

d

e

i

g

h

1

1 inf

inf inf inf

inf inf

inf

0



Dĳkstra's Algorithm
• The heap gives us one of  as a minimum distance 

node. 


• Pick . 


• Update all its neighbors by giving them an updated 
distance


• Minimum of current value


• Value of a plus 1


• a is connected to b, c, and s

{a, b}

a



Dĳkstra's Algorithm
• b gets min(1, 1+1)


• s gets min(0, 1+1)


• d gets min(inf, 1+1)

s a

b

c

f

d

e

i

g

h

1

1 inf

inf inf inf

inf inf

inf

0



Dĳkstra's Algorithm
• b gets min(1, 1+1)


• s gets min(0, 1+1)


• d gets min(inf, 1+1)


• After update, mark a as 
used by removing it from 
the priority queue

s a

b

c

f

d

e

i

g

h

1

1 2

inf inf inf

inf inf

inf

0



Dĳkstra's Algorithm
• Pick the node with minimum distance that is not marked


• Which would be b


• Update its neighbors
s a

b

c

f

d

e

i

g

h

1

1 2

inf inf inf

inf inf

inf

0



Dĳkstra's Algorithm
• d gets min(2,1+1)


• c gets min(inf, 1+1)


• e gets min(inf, 1+1)


• s gets min(0, 1+1)

s a

b

c

f

d

e

i

g

h

1

1 2

2 inf

inf inf

inf

0

2



Dĳkstra's Algorithm
• Select one of the vertices with minimum distance:


• Either c, d, or e


• Pick c


• b gets min(1,2+1)


• d gets min(2, 2+1)


• e gets min(2, 2+1)


• f gets min(inf, 2+1)


• Remove c from the priority heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 inf

3 inf

inf

0

2



Dĳkstra's Algorithm
• Select e


• Update b with min(1,2+1)


• Update c with min(2,2+1)


• Update d with min(2, 2+1)


• Update f with min(3,2+1


• Remove e from priority heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 inf

inf

0

2



Dĳkstra's Algorithm
• Select d


• Updates have no effect


• Remove d from heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 inf

inf

0

2



Dĳkstra's Algorithm
• Select g


• Only change is h gets 4


• Remove g from priority heap

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

inf

0

2



Dĳkstra's Algorithm
• Need to select f


• Update only changes i
s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

4

0

2



Dĳkstra's Algorithm
• Need to select h


• Does not change any value
s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

4

0

2



Dĳkstra's Algorithm
• Need to select i as the only 

node left


• But that does not change 
any values

s a

b

c

f

d

e

i

g

h

1

1 2

2 3

3 4

4

0

2



Dĳkstra's Algorithm
• Dijkstra's algorithm can be generalized to weighted 

graphs



Dĳkstra's algorithm
• Your turn


• Rule:


• Of course you 
choose smallest 
distance first, but 
you break ties in 
order of the 
alphabet, e.g. select 
a over f

s a b c

d ef

g h

i j



Dĳkstra's algorithm
• Select s

s a b c

d ef

g h

i j

0 inf inf inf

inf infinf

inf inf

inf inf



Dĳkstra's algorithm
• Update a and f s a b c

d ef

g h

i j

0 1 inf inf

inf inf1

inf inf

inf inf



Dĳkstra's algorithm
• Select a


• Update b and d


• s stays the same

s a b c

d ef

g h

i j

0 1 2 inf

2 inf1

inf inf

inf inf



Dĳkstra's algorithm
• Select f (no choice 

here)
s a b c

d ef

g h

i j

0 1 2 inf

2 inf1

2 2

inf inf



Dĳkstra's algorithm
• Select b s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

inf inf



Dĳkstra's algorithm
• Select d s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

inf 3



Dĳkstra's algorithm
• Select g s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

3 3



Dĳkstra's algorithm
• Select h s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

3 3



Dĳkstra's algorithm
• Select c


• We might as well 
stop here


• All updated values 
will be 4 or more, 
and every node has 
already a 3

s a b c

d ef

g h

i j

0 1 2 3

2 31

2 2

3 3



Graph Representations
• For computational purposes, we can 

use:


• List of vertices and list of edges as 
pairs











V = {a, b, c, d, e, f, g, h, i, j}

E = {(a, b), (a, e), (a, f ), (a, i), (b, c),

(b, i), (b, j), (c, d), (c, g), (c, j), (d, e),
(d, h), (d, g), (e, f ), (e, h), ( f, h), ( f, i),

(g, h), (g, j), (i, j)}

a

b

c

def
g

h

i j



Dĳkstra's Algorithm
• Need to maintain a priority heap


• Otherwise


• Look at every node


• And every edge twice



Topological Sort
• We can use a directed graph in order to represent a 

precedence relation


• Topological sort:


• Given a directed graph:


• Order all vertices in an order such that an edge 
always goes from a preceding to a succeeding 
vertex


• Or show that this is impossible because there is a 
cycle 



Topological Sort
• Example 1:


• Can arrange all vertices such 
that arrows only go down


• Sort is a,b,c,d,e,f,g,h,i,j

i

a

b

c

d

e
f

g

h

j

i
a

b
c

d

e
f

g

h

j



Topological Sort
• Example:


• There is a cycle, a topological sort is not possible

i

a

b
c

d e

f

g

h

j

i

a

b
c

d e

f

g

h

j



Topological Sort
• A simple algorithm:


• Go to the adjacency list


• Find a vertex with empty list, add it to a list, and remove it 
from the graph

i

a

b
c

d e

f

g

h

j

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:



Topological Sort
• A simple algorithm


• List contains {c}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b

d e

f

g

h

j



Topological Sort
• A simple algorithm


• Remove g and add it to the list {c, g}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b

d e

f

h

j



Topological Sort
• A simple algorithm


• Remove i and add it to the list {c, g, i}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

a

b

d e

f

h

j



Topological Sort
• A simple algorithm


• Remove d and add it to the list {c, g, i, d}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

a

b

e

f

h

j



Topological Sort
• A simple algorithm


• Remove f and add it to the list {c, g, i, d, f}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

a

b

e

h

j



Topological Sort
• A simple algorithm


• Remove j and add it to the list {c, g, i, d, f, j}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

a

b

e

h



Topological Sort
• A simple algorithm


• Remove b and add it to the list {c, g, i, d, f, j, b}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

a

e

h



Topological Sort
• A simple algorithm


• Remove e and add it to the list {c, g, i, d, f, j, b, e}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

a

h



Topological Sort
• A simple algorithm


• Remove a and add it to the list {c, g, i, d, f, j, b, e, h, a}

a: b,c,h 
b: d,j 
c: 
d: c 
e: f 
f:  
g:  
h: e 
i: g 
j:

a

h



Topological Sort
• The reverse list is the topological sort:


• {a, h, e, b, j, f, d, i, g, c}

i

a

b

d e

f

g

h

j



Topological Sort
• In this version, we have


• To determine the length of the adjacency list


• After selecting a vertex, delete that vertex from all the 
adjacency lists


• The latter means scanning all adjacency lists repeatedly


• This is inefficient



Topological Sort
• Question:  How can we do this better?



Topological Sort
• Instead of optimizing the search for vertices, we can 

optimize the selection of the vertex for removal


• Better algorithm:


• Find the in-degree for all vertices


• That is the number of edges going into a vertex


• While there are vertices with in-degree 0


• Remove the vertex


• Update the in-degrees



Topological Sort
• Example:


• Initialize in-degree 0 for all vertices

i

a

b
c

d e

f

g

h

j

a: b,c,h 
b: d,j 
c: 
d: c, j 
e: f 
f:  
g:  
h: e 
i: g 
j:



Topological Sort
• Example:


• Initialize in-degree 0 for all vertices

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j

0
0 0

0
0

0

0

0

0

0



Topological Sort
• Example:


• Go through the adjacency list.


• For each vertex in an adjacency list, add 1 to the in-degree


• For a, we change three in-degrees

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j

0
0+1 0

0
0

0+1

0

0

0

0+1



Topological Sort
• Example:


• Go through the adjacency list.


• After processing all adjacency lists, we have the correct 
in-degrees

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2



Topological Sort
• Example:


• Now we start the removal phase


• We need to find a vertex with in-degree 0


• How can we make this more efficient?

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2



Topological Sort
• Example:


• Now we start the removal phase


• We need to find a vertex with in-degree 0


• Could place the vertices in a heap

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2



Topological Sort
• Example:


• We select a for the removal


• We go through its adjacency list and reset the in-degrees 
of the nodes there

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j

0
1 0

11

2

2

1

1

1

2



Topological Sort
• Example:


• We select a for the removal:  


• We go through its adjacency list and reset the in-degrees 
of the nodes there

{a}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j

0 0

11

1

2

1

1

0

2



Topological Sort
• Example:


• We update our heap and select one of the 0-in-degree vertices:


• b:  


• and update the in-degrees of d and j

{a, b}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

b
c

d e

f

g

h

j

0 0

11

0

2

1-1

2-1

0 1



Topological Sort
• Example:


• We update our heap and select one of the 0-in-degree vertices:


• b:  


• and update the in-degrees of d and j

{a, b}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

c

d e

f

g

h

j

0 0

11

1

2

0

1



Topological Sort
• Example:


• We now randomly pick on of the vertices with degree 0, let's 
pick i


• Deleting it means just decrementing the in-degree of g

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

c

d e

f

g

h

j

0 0

11

1

2

0

1



Topological Sort
• Example:


• We add g to our list {a, b, i, g}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

d e

f

g

h

j

0

0

1

1

2

0

1



Topological Sort
• Example:


• There are three nodes with in-degree 0, let's pick h

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

d e

f

g

h

j

0

0

1

1

2

0

1



Topological Sort
• Example:


• There are three nodes with in-degree 0, let's pick h

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

d e

f

g

h

j

0

0

1

1

2

0

1



Topological Sort
• Example:


• Need to update in-degree of e


• {a, b, i, g, h}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

d e

f

g

j

0

0

1

2

0

1



Topological Sort
• Example:


• There are two nodes with in-degree 0, let's pick d

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

d e

f

g

j

0

1

1

2

0

1



Topological Sort
• Example:


• {a, b, i, g, h, d}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

d e

f

g

j

0

1

1

2

0

1
1



Topological Sort
• Example:


• 


• Can pick among four nodes: e

{a, b, i, g, h, d}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

e

f

g

j

0

0

0

1
0



Topological Sort
• Example:


• 


• Can pick among four nodes in any order

{a, b, i, g, h, d, e}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

c

f

g

j

0

0

0

0



Topological Sort
• Example:


• 


• Can pick among four nodes in any order

{a, b, i, g, h, d, e, h, j, f}

a: b,c,h 
b: d,j 
c: 
d: c,j 
e: f 
f:  
g:  
h: e 
i: g 
j:

i

a

b
c

d e

f

g

h

j



Topological Sort
• Analysis for topological sort on 


• Need to establish in-degrees:  


• Process all elements in an adjacency list


• Correspond to edges


• work 


• For each vertex: 


• find the vertex as a vertex of minimum in-degree


• update in-degrees by going through the adjacency list


• Latter work is  because we process each adjacency list entry once


• Delete the adjacency list


• Work is 

G = (V, E)

∼ |E |

∼ |E |

∼ V



Topological Sort
• This algorithm is almost  but for finding the 

minimum in-degree


• We will see a better algorithm shortly

O( |E | )



Weighted Graphs
• Graphs with edge 

weights


• Often, graphs in CS 
have edge weights


• Example: edge 
weight indicates the 
size of a pipeline 


• such as network 
connection, 
capacity of 
roads, etc.

7

1

3

Source

Destination

4 3

3

2

5 8

2 2

How much can you pump from source to 

destination if the pipes have the indicated 

capacities (Flow Problem)



Weighted Graphs
• Graphs with edge weights


• Weights can indicate distance


• What is the shortest distance from source to destination

Destination

Source
3

5 2 2

1

1

1 14

7

3


