Graphs Thomas Schwarz, SJ

- A graph has a set of vertices V and a set of edges.
 - Directed edges are pairs (u, v) with $u, v \in V$
 - Undirected edges are two-sets $\{u, v\}$ with $u, v \in V$
- A graph with directed edges is called a directed graph
- A graph with undirected edges is just called a graph

- Graphs are represented by:
 - drawing the vertices as small circles
 - drawing the edges as edges
- Directed edges are drawn as arrows

An undirected graph with 7 vertices and 7 edges

A directed graph

- Computer scientist sometimes differ from mathematicians in what is called a graph
 - In Mathematics, a(n undirected) graph can
 - Have only one edge at most between two vertices
 - Cannot have an edge to the same vertex

- Computer scientist sometimes differ from mathematicians in what is called a graph
 - In Mathematics, a directed graph can
 - Have only one edge at most between two vertices
 - Cannot have an edge to the same vertex

- Mathematicians call a graph that allows multiple edges between the same pair of vertices
 - a multigraph

- To understand graphs, we can use:
 - The visual representation
 - E.g. The neighbor graph
 - Take a political map

- Examples:
 - Place a vertex in every entity (state, not DDFF).
 - Connect vertices if the entities have a common border

- Vertices are stations
- Edges represent a connection via underground or light rail
- This is <u>multi-graph</u> because several edges can connect a station

• Different visualizations can still give you the same graph, as you can see from the examples below

- Two graphs are isomorphic, if there is a renaming of the vertices that converts one into the other and vice versa
 - Mathematically, a renaming is a bijection

• These two do not look the same, but they are isomorphic: $a \rightarrow b, b \rightarrow c, c \rightarrow e, d \rightarrow d, e \rightarrow a$

• Two graphs are isomorphic, if there is a renaming of the vertices that converts one into the other and vice versa

G = (V, E) is isomorphic to G' = (V', E')

 \Leftrightarrow

 $\exists f \colon V \to V' \text{ bijection } : \forall v_1, v_2 \in V \colon (f(v_1), f(v_2)) \in E' \Leftrightarrow (v_1, v_2) \in E$

- Determining whether two graphs are isomorphic is a known, difficult question
 - Some results are easy, e.g. vertices of the same rank (the number of edges adjacent to a vertex) need to be mapped to vertices of the same rank
 - So, these two graphs *cannot* be isomorphic

• These two graphs *cannot* be isomorphic

- The left graph has two vertices of degree 2
- The right graph has no vertices of degree 2
- But the number of vertices and edges is equal

- Vertex degree: Number of edges incident to a vertex
- Vertex degree vector: Made up of vertex degrees of all vertices
- Handshake Lemma: The sum of vertex degrees is twice the number of edges
 - Proof: Each edge contributes twice to the sum of the vertex degrees
- Number of odd vertices (vertex degree is odd) is even

- An adjacency list
 - For every vertex the list of vertices to which there is an edge

С

g

- An adjacency matrix
 - square matrix conceptually labeled with vertices
 - coefficient $a_{i,j} = \begin{cases} 1 \text{ edge between } v_i \text{ and } v_j \\ 0 \text{ otherwise} \end{cases}$

Number of Vertices and Edges

- Graph G = (V, E) with vertices V and edges E
 - Whether directed or undirected, graph can have as many edges as there are pairs of vertices

• The latter is
$$\binom{|V|}{2} = \frac{|V|(|V|-1)}{2}$$

• Number of edges is at most $O(|V|^2)$

Number of Vertices and Edges

- Graph G = (V, E) with vertices V and edges E
 - Graph algorithms usually need to look at each edge at least once
 - there are some idiosyncratic exceptions
 - They usually run in time at least $\Theta(|V|^2)$
 - However, many important graphs are <u>sparse</u>:
 - No edge between most pairs of vertices

- There are a number of important properties of graphs
 - No need to learn them by heart, the ones used in CS will get repeated over and over again
 - A path between two vertices $u, w \in V$ of a graph G = (V, E) is a list of vertices

 $u = v_0, v_1, ..., v_{n-1}, v_n = w$ such that there is an edge between all v_i and v_{i+1}

• Furthermore, no vertices can be repeated

- Example for a path:
 - Has length 5 (number of edges)

- Example for a walk that is not a path
 - We visit the center vertex twice

• For directed graphs, the paths need to follow the arrow

• A directed graph (digraph) is strongly connected if there is a path from every vertex to every other vertex

- An undirected graph is connected if there is a path from every vertex to every other vertex
 - This is not a connected graph

• But it consists of two connected components

- Interesting question
 - Is the friends graph on facebook connected
 - The "friend" relation is mutual, so all users are vertices and there is an edge if two users are in a friends-relation
 - Probably not, because we signed up my mom on facebook and she did not like it, so she is no longer friends with anyone
 - But how about "active users"
 - Could there be a republican and a democratic facebook
 - No, but maybe there are isolated groups

- An Euler tour is a closed tour that traverses each edge of the graph only once.
 - Graphs with an Euler tour are called Eulerian
- Theorem: An undirected, connected graph is Eulerian if each vertex has even degree.
 - Recall: Degree is the number of edges of the vertex

- Königsberg bridge problem
 - Königsberg had seven bridges over the river Pregel
 - Is it possible to have an afternoon walk crossing all bridges exactly once

- Solved by Euler
 - Translate into a multi-graph (multiple edges allowed)

- Actually, <u>all</u> edges have odd degree, so such a tour is not possible
- To show that the theorem is correct:
 - Euler tour exists implies all vertex degrees are even
 - Because an Euler tour visits all edges and every time it visits an edge, it needs to come and to go.

- Other direction can be shown using *Fleury*'s algorithm
 - Key observation:
 - If we remove the edges from a closed tour
 - (starts and ends at the same vertex)
 - then in the remaining graph all vertices have still even degree

- Fleury's algorithm:
 - Start at a node and walk anywhere, marking the edge
 - Leave the node that you arrived at
 - Continue until you can no longer find an unused edge
 - At this point, you are back in the starting vertex
 - If any of the vertices visited has a unused edges, start with that edge until you are back at that edge.
 - Splice the new circuit into the old one

• Example

• Start at a random vertex

• Make a tour

Check for vertices with unused edges and pick a random one

• Start out creating a random circuit of unused edges

• Pick another vertex with unused edges

• Start a new part of the circuit

Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

 In the new circuit, there are still vertices without all edges used.

Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

• And after this, we are done

Circuit is: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.5.1, 8.5.2, 8.5.3, 8.5.4, 8.5.5, 8.5.6, 8.5.7, 8.5.8, 8.6, 8.7, 8.8

Hamiltonian Circuit

Similar question: Is there a circuit that goes through all vertices

Hamiltonian Circuit

- Turns out to be very difficult
 - Can be shown to not be decidable with a polynomial time algorithm

Graph Definitions

- Distance in a graph:
 - Length of the shortest path between two vertices

 $\delta(u, w) = \min\{n \mid \exists v_0 = u, v_1, \dots v_n = w \text{ such that } (v_i, v_{i+1} \in E \forall i \in \{0, \dots, n-1\}\}$

- Want to determine the distance between a vertex *s* and all other vertices in an undirected graph
 - Dynamic programming algorithm
 - Add intermediate vertices one by one
 - Start: Every vertex not *s* gets distance infinity
 - *s* gets distance 0
 - Put all vertices into a priority heap ordered by distance
 - We can quickly extract a vertex with minimum distance

• Example:

- Update s:
 - Give all neighbors of *s* distance 1

- The heap gives us one of {*a*, *b*} as a minimum distance node.
 - Pick *a*.
 - Update all its neighbors by giving them an updated distance
 - Minimum of current value
 - Value of a plus 1
 - a is connected to b, c, and s

- b gets min(1, 1+1)
- s gets min(0, 1+1)
- d gets min(inf, 1+1)

- b gets min(1, 1+1)
- s gets min(0, 1+1)
- d gets min(inf, 1+1)

 After update, mark a as used by removing it from the priority queue

- Pick the node with minimum distance that is not marked
- Which would be b
- Update its neighbors

- d gets min(2,1+1)
- c gets min(inf, 1+1)
- e gets min(inf, 1+1)
- s gets min(0, 1+1)

- Select one of the vertices with minimum distance:
 - Either c, d, or e
 - Pick c
 - b gets min(1,2+1)
 - d gets min(2, 2+1)
 - e gets min(2, 2+1)
 - f gets min(inf, 2+1)
 - Remove c from the priority heap

0

S

- Select e
 - Update b with min(1,2+1)
 - Update c with min(2,2+1)
 - Update d with min(2, 2+1)
 - Update f with min(3,2+1
- Remove e from priority heap

- Select d
 - Updates have no effect
- Remove d from heap

0

S

- Select g
 - Only change is h gets 4
- Remove g from priority heap

- Need to select f
 - Update only changes i

- Need to select h
 - Does not change any value

- Need to select i as the only node left
 - But that does not change any values

 Dijkstra's algorithm can be generalized to weighted graphs

- Your turn
- Rule:
 - Of course you choose smallest distance first, but you break ties in order of the alphabet, e.g. select a over f

• Select s

Update a and f

- Select a
 - Update b and d
 - s stays the same

 Select f (no choice here)

• Select b

• Select d

• Select g

• Select h

- Select c
 - We might as well stop here
 - All updated values will be 4 or more, and every node has already a 3

Graph Representations

b

а

е

С

d

g

- For computational purposes, we can use:
 - List of vertices and list of edges as pairs

$$V = \{a, b, c, d, e, f, g, h, i, j\}$$

$$E = \{(a, b), (a, e), (a, f), (a, i), (b, c)\}$$

(b, i), (b, j), (c, d), (c, g), (c, j), (d, e), (d, h), (d, g), (e, f), (e, h), (f, h), (f, i),

 $(g,h),(g,j),(i,j)\}$

- Need to maintain a priority heap
 - Otherwise
 - Look at every node
 - And every edge twice

Topological Sort

- We can use a directed graph in order to represent a precedence relation
 - Topological sort:
 - Given a directed graph:
 - Order all vertices in an order such that an edge always goes from a preceding to a succeeding vertex
 - Or show that this is impossible because there is a cycle
- Example 1:
 - Can arrange all vertices such that arrows only go down
 - Sort is a,b,c,d,e,f,g,h,i,j

- Example:
 - There is a cycle, a topological sort is not possible

- A simple algorithm:
 - Go to the adjacency list

 Find a vertex with empty list, add it to a list, and remove it from the graph

• A simple algorithm

• List contains $\{c\}$

• A simple algorithm

• Remove g and add it to the list $\{c, g\}$

• A simple algorithm

• Remove i and add it to the list $\{c, g, i\}$

• A simple algorithm

• Remove d and add it to the list $\{c, g, i, d\}$

• A simple algorithm

• Remove f and add it to the list $\{c, g, i, d, f\}$

• A simple algorithm

• Remove j and add it to the list $\{c, g, i, d, f, j\}$

• A simple algorithm

• Remove b and add it to the list $\{c, g, i, d, f, j, b\}$

- A simple algorithm
 - a: b,c,h
 b: d,j
 c:
 d: c
 e: f
 f:
 g:
 h: e
 i: g
 j:
- Remove e and add it to the list $\{c, g, i, d, f, j, b, e\}$

• A simple algorithm

• Remove a and add it to the list $\{c, g, i, d, f, j, b, e, h, a\}$

- The reverse list is the topological sort:
 - $\{a, h, e, b, j, f, d, i, g, c\}$

- In this version, we have
 - To determine the length of the adjacency list
 - After selecting a vertex, delete that vertex from all the adjacency lists
- The latter means scanning all adjacency lists repeatedly
- This is inefficient

• Question: How can we do this better?

- Instead of optimizing the search for vertices, we can optimize the selection of the vertex for removal
- Better algorithm:
 - Find the in-degree for all vertices
 - That is the number of edges going into a vertex
 - While there are vertices with in-degree 0
 - Remove the vertex
 - Update the in-degrees

• Example:

- a: b,c,h b: d,j c: d: c, j
- e: f
- f: g:
- h: e
- i: g
- j:

• Initialize in-degree 0 for all vertices

• Example:

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

• Initialize in-degree 0 for all vertices

- Example:
 - a: b,c,h
 b: d,j
 c:
 d: c,j
 e: f
 f:
 g:
 h: e
 i: g
 j:

- Go through the adjacency list.
 - For each vertex in an adjacency list, add 1 to the in-degree
 - For a, we change three in-degrees

• Example:

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

- Go through the adjacency list.
 - After processing all adjacency lists, we have the correct in-degrees

- Example:
 - a: b,c,h
 b: d,j
 c:
 d: c,j
 e: f
 f:
 g:
 h: e
 i: g
 j:

- Now we start the removal phase
 - We need to find a vertex with in-degree 0
 - How can we make this more efficient?

- Example:
 - a: b,c,h
 b: d,j
 c:
 d: c,j
 e: f
 f:
 g:
 h: e
 i: g
 j:

- Now we start the removal phase
 - We need to find a vertex with in-degree 0
 - Could place the vertices in a heap

• Example:

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

- We select a for the removal
 - We go through its adjacency list and reset the in-degrees of the nodes there

- We select a for the removal: $\{a\}$
 - We go through its adjacency list and reset the in-degrees of the nodes there

- We update our heap and select one of the 0-in-degree vertices:
 - b: {*a*,*b*}
 - and update the in-degrees of d and j

- We update our heap and select one of the 0-in-degree vertices:
 - b: {*a*,*b*}
 - and update the in-degrees of d and j

- We now randomly pick on of the vertices with degree 0, let's pick i
- Deleting it means just decrementing the in-degree of g

• Example:

• We add g to our list $\{a, b, i, g\}$

• Example:

• There are three nodes with in-degree 0, let's pick h

• Example:

• There are three nodes with in-degree 0, let's pick h

• Example:

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: q

- j:
- Need to update in-degree of e
- $\{a, b, i, g, h\}$

- a: b,c,h b: d,j c: d: c,j e: f f: g: h: e i: g j:
- There are two nodes with in-degree 0, let's pick d

• Example:

a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:

• $\{a, b, i, g, h, d\}$

- $\{a, b, i, g, h, d\}$
- Can pick among four nodes: e

- $\{a, b, i, g, h, d, e\}$
- Can pick among four nodes in any order

- Example:
 - a: b,c,h
 b: d,j
 c:
 d: c,j
 e: f
 f:
 g:
 h: e
 i: g
 j:

- $\{a, b, i, g, h, d, e, h, j, f\}$
- Can pick among four nodes in any order
Topological Sort

- Analysis for topological sort on G = (V, E)
 - Need to establish in-degrees:
 - Process all elements in an adjacency list
 - Correspond to edges
 - work $\sim |E|$
 - For each vertex:
 - find the vertex as a vertex of minimum in-degree
 - update in-degrees by going through the adjacency list
 - Latter work is $\sim |E|$ because we process each adjacency list entry once
 - Delete the adjacency list
 - Work is $\sim V$

Topological Sort

- This algorithm is almost O(|E|) but for finding the minimum in-degree
- We will see a better algorithm shortly

Weighted Graphs

- Graphs with edge weights
 - Often, graphs in CS have edge weights
 - Example: edge weight indicates the size of a pipeline
 - such as network connection, capacity of roads, etc.

How much can you pump from source to destination if the pipes have the indicated capacities (Flow Problem)

Weighted Graphs

- Graphs with edge weights
 - Weights can indicate distance
 - What is the shortest distance from source to destination

