Overview

- A generic recipe for computation
 - Finite sequence of instructions
 - to solve a computational problem
- Should work on broad category of computers
 - E.g. Algorithms for quantum computers, biological computers are / would be different

- Correctness
 - Is the algorithm *guaranteed* to give the correct result
 - Is the algorithm guaranteed to give the correct result using resources
- Performance
 - Measured in resource use:
 - Time
 - Storage / memory
 - Energy use
 - Overwrites in an SSD, ...

Standard Model of Computing

- What is presented to the programmer:
 - Computer reads instructions from memory
 - Computer acts on instructions by changing memory locations
 - Example: addi x, 5
 - Load x into accumulator, load 5 into a register, add results, move accumulator results back into memory where x is located

- Instructions do not take the same amount of time
 - Almost since the beginning of computer architecture
 - Idealization: Fetch-Execute Cycle with fixed timing
- Instructions are not performed serially
 - Pipelining of instructions
 - Reordering of instructions by compiler or architecture

- Memory access is not uniform
 - Early modification: Virtual Memory

- Modern modification:
 - Registers
 - Cache Level 1
 - Cache Level 2
 - Cache Level 3
 - Main Memory (DRAM)
 - Storage
 - Buffer Cache HDD block / SSD page

- Multi-threaded (e.g. multi-core) :
 - Many instructions & access to variables are not threadsafe
 - E.g.: Can only argue that a flag is either set or not if the flag is "atomic" (with software and hardware support)
 - Multi-core architecture manages to prevent a processor from having a different view of memory than another processor
 - But this is getting more and more difficult

- Storage and Memory systems prioritize reads over writes
- In case of failure, bad things can happen:
 - Can store a block
 - Read from this block
 - Power failure
 - Read from the block:
 - Value has changed

Standard Model of Computing

- Contract between system and programmer:
 - System does what programmer wants, but in a different faster way
 - With a few exceptions, which makes multi-threaded computing so challenging

Standard Model of Computing

- Turns out that the optimizations of modern computing systems **do not** create genuine new capabilities
- We can *emulate* a modern system using an old one
- We can even *emulate* a modern system using a model of computing used in the 30s and 40s to model what Mathematics can compute:
 - Turing machine

DNA Computing

- DNA can store vast amounts of information in a very small space.
 - Store data (key-value pair) by encoding in DNA subsequences
 - To look up by key:
 - Introduce the compliment of the key's substring affixed to a magnetic bead
 - Compliment bonds to DNA molecules with that key
 - Extract these DNA molecules magnetically
 - Sequence them for the result
- Does not change the basic capabilities

Quantum Computing

- Uses quantum phenomena for computing
 - Especially super-position and entanglement
 - Can be analog or digital
 - Digital quantum computing uses quantum gates
 - Difficulty now is getting up the number of q-bits in a system
- Could be faster than classical computers
 - Example: Shor's algorithm for factoring integers, Boson sampling
- Will almost certainly force current cryptography to use much larger keys

Quantum Computing

- Does not seem to change what is computable
- Changes possibly dramatically the speed at which things can be computed

- Algorithms \neq Implementation
 - An algorithm can be implemented more or less efficiently

- You can measure the speed of an implementation on a given system fairly accurately
- You can derive the performance of an algorithm using a computing model

- Correctness
 - Can we prove that the answer given by an algorithm is correct?
 - via Automated proof methods
 - via human reasoning
 - Often involves pseudo-code

- Performance
 - Needs to be measured independently of implementation
 - Depends on the "instance size"
 - Many problems in CS become proportionally <u>more</u> <u>difficult</u> as they grow
 - Use an "asymptotic" notation to capture behavior as we "scale up"

Performance

- Computing uses resources
 - Space: How much storage is needed
 - Time: How many instructions are needed
- But it becomes more interesting:
 - Some problems need to use storage (flash / disks)
 - Storage is much slower
 - Performance measurement: How many times does the algorithm need to access storage

Performance

- Parallel / Multi-threaded performance
 - Almost all computers have limited capability to execute instructions in parallel
 - E.g.: Develop data structures that are
 - thread-safe
 - lock-free (no locking of shared resources needed)
 - wait-free (no waiting for a thread to access a data structure)

Impossibility Results

- Can all problems be solved with a computer
 - Depends on the type of computer, but:
 - In a very generic computing model, there are problems that cannot be solved

Impossibility Results

- Are there problems that can become prohibitively expensive?
- Answer: Probably yes. There are classes of problems that become intractable as they scale up

Outlay of Class

- Goal:
 - You are to develop the capability to argue about the
 - correctness
 - performance
 - of algorithms and data structures
 - You are to develop the capability to invent simple algorithms and data structures
 - You are to develop the capability to implement algorithms and data structures

Outlay of Class

- Contents:
 - Finite automata and regular expressions
 - Recurrence, asymptotic comparisons, and divide-andconquer problems
 - Fast Data Structures
 - Dynamic and greedy programming
 - Graph Algorithms
 - Limits of Computability
 - Complexity Classes

Introduction to Performance

- Type 1: All operations take the same time
- Type 2: Only count certain operations
- Type 3: Count how often the instructions in the body of a loop are executed

• Example 1:

```
def bubble_sort(an_ar):
for i in range(len(an_ar)):
    for j in range(i+1, len(an_ar)):
        if an_ar[i] > an_ar[j]:
             an_ar[i], an_ar[j] = an_ar[j], an_ar[i]
```

• Identify the inner loop

```
def bubble_sort(an_ar):
for i in range(len(an_ar)):
    for j in range(i+1, len(an_ar)):
        if an_ar[i] > an_ar[j]:
             an_ar[i], an_ar[j] = an_ar[j], an_ar[i]
```

Count the number of times the inner loop is executed

• Let *n* be the number of elements in the array

- Let *n* be the number of elements in the array
 - For i = 0: for j in range(1, n):
 - n-1 repetitions

- Let *n* be the number of elements in the array
 - For i = 0: n 1 repetitions
 - For i = 1: n 2 repetitions
 - ...
 - For i = n 1: 0 repetitions

• Let *n* be the number of elements in the array

•
$$(n-1) + (n-2) + ... + 2 + 1 + 0$$
 repetitions

• i.e.
$$\frac{(n-1)\cdot n}{2}$$
 repetitions

- Often, the input determines the number of operations
- Example: Quicksort
 - Recursive operations based on
 - select a random pivot
 - partition array around random pivot
 - quick-sort each partition
 - If partition are very small, use another sorting algorithms

- Partition cost: *n* comparisons for *n* elements in array
- Best Case:
 - Pivots are always chosen to divide the array evenly
 - ((1+1+1)+1+(1+1+1))+1+((1+1+1)+1+(1+1+1))
 - Ideal array size is $2^{n+1} 1$ with *n* steps
 - If elements are distinct:
 - Only one pivot
 - At each step, we have to partition all elements that were not pivot previously

- Quicksort Best Case Performance:
 - $2^{n+1} 1$ array elements with *n* steps
 - First step: Compare pivot with $2^{n+1} 2$ elements
 - Second step: Previous pivot is no longer compared
 - Compares two pivots with a total of 2ⁿ⁺¹ 3 elements
 - Third step: Previous pivots are no longer used
 - Compare a total of four pivots with a total of $2^{n+1} 7$

- Quicksort Best Case Performance:
 - $2^{n+1} 1$ array elements with *n* steps
 - Total number of comparisons:

•
$$n \cdot (2^{n+1} - 1) - (1 + 2 + 4 + \dots + 2^{n-1})$$

= $2^{n-1}(4n - 1) - n$

- $N = 2^{n+1} 1 \Longrightarrow n = \log_2(N+1) 1$
- Total number of comparisons is

•
$$1 - \log_2(N) + \frac{1}{4}(1 + N)(4(\log_2(N + 1) - 1))$$

- Quicksort Worst Case:
 - Pivot is always the smallest element
 - If there are N elements in the array:
 - N 1 rounds reducing the array by one element each time

•
$$(N-1) + (N-2) + \dots 1 = \frac{N(N-1)}{2}$$

comparisons