
P and NP Complexity
Classes

Algorithms

Motivation
• Design of an algorithm is an important task of a Computer

Scientist

• Need to show that an algorithm is correct

• Need to show how an algorithm behaves

• Need to know whether an efficient algorithm can
exist

Motivation
• Complexity Theory

• Presents classes of algorithms and suspects
differences between them

• Needed to formulate modern cryptography

Class P
• Most algorithms considered to be effective are polynomial

time bound

• In reality, algorithms with runtimes in are
considered useless

• Class P: set of problems for which there exists a
polynomially bound algorithm that solves them

∃k ∈ ℕ runtime(n) ∈ O(nk)
Ω(nk), k > 2

Class NP
• Algorithms in P can be “efficiently” calculated

• Sometimes, problems are hard to solve but

easy to verify

• Example: Finding a path of length n in a

graph

• NP: Class of problems for which a solution

can be verified in polynomial time

• Alternative Formulation: Can be solved by a

non-deterministic algorithm that is
polynomially bound

• The algorithm “guesses” a solution and

then verifies it

A Conjecture and a
Theorem

• Conjecture:

• Theorem: There exists problems such that

•

• These problems are called NP-complete

• The existence of NP-complete problems is evidence
that the conjecture might be true

𝒫 ≠ 𝒩𝒫
p ∈ 𝒩𝒫

p ∈ 𝒫 ⟹ 𝒫 = 𝒩𝒫

A Conjecture and a
Theorem

• There are very similar problems that are in different
classes

• Graphs

• Eulerian tour: A cycle that visits every edge at least
once (though it usually visits vertices several times):

• Hamiltonian cycle: A simple cycle that visits every
vertex exactly once (but usually does not visit every
edge)

𝒫

𝒩𝒫𝒞

A Conjecture and a
Theorem

• There are very similar problems that are in different
classes

• Graphs:

• Shortest Path between two vertices

• Existence of a path of certain length
𝒫

𝒩𝒫𝒞

A Conjecture and a
Theorem

• There are very similar problems that are in different
classes

• Satisfiability

• Given a boolean formula in conjunctive normal form,
find a variable assignment that makes the formula
true.

(¬a ∨ b)(a ∨ ¬b ∨ c)(a ∨ c)(¬a ∨ b ∨ ¬c)
a = 1, b = 1, c = 1

A Conjecture and a
Theorem

• There are very similar problems that are in different
classes

• Satisfiability

• Many problems can be formulated in terms of
satisfiability

Human-Computer
Authentication

• Click in the triangle defined by the secret icons

Human-Computer
Authentication

• Safety question

• How many interactions do need to be observed in order to
find the secret?

• One problem: people usually click on the center of the
triangle

• Greater problem: Evaluation can be formulated as a
satisfiability problem

• Good (non-P) algorithms exists to solve them usually fast

• Can be shown that few interactions need to be observed
in order to deduce the secret

A Conjecture and a
Theorem

• There are very similar problems that are in different
classes

• Satisfiability

• 2-CNF Satisfiability

• Decide satisfiability if the or-clauses can have one
or two variables

• 3-CNF Satisfiability

• Decide satisfiability if the or-clause can have three
(or less) variables

𝒫

𝒩𝒫𝒞

Existence vs. Solution
• Decision problem: Answer is yes or no

• Optimization problem: Find a feasible solution

• Can change optimization problems into decision problem

• Example: Finding longest path in a graph

• Decision Problem: is there a path of length l

• Solve the decision problem repeatedly in order to find the maximum
length of a path

• Once found the maximum length, remove edges one by one to see
whether the maximum length has changed

• So, solving the decision problem allows you to find a solution

Encodings
• We look at the run-time in dependence on the size of the problem

• But the size of the problem can change if we use a different
encoding

• Example: Knapsack

• Rectangle is of size

• Can encode numbers in unary

• Then dynamic programming is in P

• Can encode numbers in binary

• Then dynamic programming is not in P

• If l is the number of digits, then rectangle is of size

n × m

2l × 2l

A first problem in NPC
• A boolean circuit consists of the normal gates and has no

cycles (input feeding back)

• Decision problem: Is a circuit satisfiable, i.e. is there a
selection of inputs such that the circuit output is 1

A first problem in NPC
• Given a description of the circuit, we can check in

polynomial time whether a given assignment satisfies the
circuit

A first problem in NPC
• Assume a decision problem in NP.

• Thus, there exists an algorithm A that verifies a solution y
for problem x in polynomial time

• The idea is to translate this into a circuit

A first problem in NPC
• The algorithm is executed on a computer with program

counter PC, machine state, and working storage

• The computer has as input the algorithm (program), the
problem x and the solution

Algorithm as a program PC machine state input x solution y working storage

A first problem in NPC
• The computer then executes a first step. This is emulated

by a Boolean circuit.

• The circuit M is independent of the instruction executed
and the input

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

A first problem in NPC
• We repeat this over and over

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

A first problem in NPC
• Eventually, the first

bit in working
storage will contain
the answer, 0 for
failure and 1 for
solution worked

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

Algorithm as a program PC machine state input x solution y working storage

M

Algorithm as a program PC machine state input x solution y working storage

.

.

.

1

A first problem in NPC
• What is the size of the circuit?

• Since the algorithm runs in worst case time

• The working storage is smaller than

• The aux. machine state is smaller than

• Program, PC, x, y are smaller than

• First row is smaller than

f(n) ∈ ℝ[n]

f(n)
f(n)

f(n)
f(n)6

A first problem in NPC
• The number of rows is smaller than

• Total size of the circuit is smaller than

• which is still a polynomial

f(n)
f(n)7

A first problem in NPC
• Given a problem in NP

• Can construct the circuit in polynomial time

• Details are skipped over

• Circuit has input y (the guessed solution)

• And outputs whether for a given x the solution y is indeed a
solution

• If circuit-satisfiability is in P:

• Can decide whether a given x has a solution in polynomial
time

• Therefore, the original problem would be in P

