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Problem
• Networking: LAN


• Switches are connected by links


• Cycles can create problems:


• Broadcast radiation


• A broadcast or multicast message is repeatedly 
received by the same switch and resend and 
resend and resend and resend …



Problem
• Solution:


• Use an acyclic subgraph that contains all switches for 
broadcasting, multicasting, and in general for 
addressing purposes



Trees
• A tree is a graph that is:


• acyclic


• connects all vertices



Trees
• A tree has exactly  edges if there are  vertices. 


• Proof: A tree connects all edges. 


• One edge connects two vertices.


• By induction:  edges can connect at most  
vertices.
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Trees
• Any two out of the following three properties imply the 

other one


•  is connected


•  has no cycles


•  has  vertices and  edges
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Weighted Graphs
• We look at graphs where each edge has a weight


• Depending on application, some weights can be 
negative or all weights have to be positive
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Weighted Graphs
• Other example:



Minimum Spanning Trees
• Given a weighted graph:


• Find a subset  of edges such that


• connects all vertices


• is acyclic


• Total weight is minimal


                   


• Called a minimum weight spanning tree, but 
"weight" is usually omitted

T

w(T ) = ∑
(u,v)∈T

w(u, v) ⟶ ∞



Minimum Spanning Trees
• Two greedy algorithms, Kruskal's and Prim's


• Use a loop invariant:


• Let  be the set of edges currently selected


• Invariant:  is a subset of some minimum spanning tree


• At each step of the algorithm: only add an edge  if 
the invariant remains true after inserting the edge


• Such an edge is a safe edge

A
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(u, v)



Minimum Spanning Trees
• Generic MST algorithm


1. 


2. While  is not a spanning tree


1.  Find a safe edge


2.  Add the safe edge to A


3.Return A

A = ∅

A



Minimum Spanning Trees
• A cut is a partition of the vertices of the graph

cut
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Minimum Spanning Trees
• Edges can "cross the cut"

cut
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Minimum Spanning Trees
• Edges are "light" if they cross the cut and no other edge 

crossing the cut has a smaller weight
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Minimum Spanning Trees
• A cut respects  if no edge of A crosses the cutA
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Minimum Spanning Trees
• Theorem:  Let A be a subset of  included in some 

minimum spanning tree, let  be a cut respecting 
A and let  be a light edge crossing the cut. Then this 
edge is safe.

E
(S, E − S)
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Minimum Spanning Trees
• Proof:  


• We have a  subgraph 
A that is part of a 
minimum spanning 
tree 


• We have a minimum 
weight crossing edge 

 crossing the cut 
that separates A from 
the rest of the graph

T

(u, v)
This set A has two different 

connected components and 

consists of red vertices

T is given by the fatter edges
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Minimum Spanning Trees
• Case 1:  The edge 

is part of T


• Then there is 
nothing to show 
since adding the 
edge still gives us a 
subgraph that is 
part of a minimum 
spanning tree

v

u cut
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Minimum Spanning Trees
• Case 2: The edge is not part of T
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Minimum Spanning Trees
• In this case, we need to construct a new minimum weight 

spanning tree


• Observe that there has to be an edge of T that crosses 
the cut


• Because we can travel from every node to every node 
in T and not all nodes are in A



Minimum Spanning Trees
• This edge in T that crosses the cut also has weight 2 in 

our example, but for sure, it has weight  the weight of 



• There is another edge

≥
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Minimum Spanning Trees
• There has to be a path from   to  in  because  is a 

spanning tree
u v T T

v

u



Minimum Spanning Trees
• This path has to have at least one edge that crosses the 

cut
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Minimum Spanning Trees
• Take one of these edges and replace it with  in 


• Call the result 

(u, v) T

T′ 

v

u
v

u



Minimum Spanning Trees
•  still connects all of the vertices


• If  are two vertices that are connected in T by the deleted 
edge:


• Can reroute through the edge 


•  has a weight changed by replacing the weight of  with 
the weight of the deleted edge


• But because the weight of  is minimal among all edges 
crossing the cut and the deleted edge also crossed the cut, 

 weight can only be lower


• Thus,  after adding the edge  fulfills still the invariant. qed

T′ 

a, b

(u, v)

T′ (u, v)

(u, v)

T′ 

A (u, v)



Kruskal's Algorithm
• Kruskal's algorithm works by joining subtrees


• Start out with all vertices being their own subtrees


• Thus, the cut is around all of the vertices


• While we have more than one subtree:


• We select a cutting edge (i.e. between different 
subtrees) with minimum weight 


• This combines two subtrees



Kruskal's Algorithm
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Kruskal's Algorithm
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Kruskal's Algorithm
• Because Kruskal's algorithm only adds safe edges, it 

generates a minimum weight spanning tree


• How to organize it?


• We can order all of the edges by weight


• And then remove edges if they no longer are cutting 
edges


• Best way: 


• Maintain vertices in the same subtree in a set


• Determine quickly whether something is in a set



Kruskal's Algorithm
• Best solution known to humanity for the disjoint set 

problem:


• have vertices organized by a directed edge to the "set 
leader"
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 {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}



Kruskal's Algorithm
• If we unite  and , we have one point to the other{a} {b}

 {a, b}, {c}, {d}, {e}, {f}, {g}, {h}
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Kruskal's Algorithm
• Same if we unite  and {g} {h}
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{a, b}, {c}, {d}, {e}, {f}, {g, h},



Kruskal's Algorithm
• If we ask whether b and g are in two different 

components, we follow the arrow and see whether the 
leaders are the same or not.
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{a, b}, {c}, {d}, {e}, {f}, {g, h},



Kruskal's Algorithm
• This can be optimized:


• There is the possibilities of having long chains
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Kruskal's Algorithm
• When we join, we connect one leader to the other leader


• Always make the larger set the head

{a, b, c d}, {e, f} ∪ {g, h, i, j},
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Kruskal's Algorithm
• When we do a look up:


• What is the head of c?


• Follow three links to get to 'h'
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Kruskal's Algorithm
• When we do a look up:


• Reconnect the node and all we travel to directly to the 
head
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Kruskal's Algorithm
• Best possible case: Every node points directly to the head
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Kruskal's Algorithm
• With this "disjoint union data structure":


• Maintaining the disjoint set data structure costs 
 per operation where  is a function that grows 

very slowly


• Kruskal's algorithm then runs in time  

α( |V | ) α

O( |E | log( |E | ))



Prim's Algorithm
• Prim's algorithm starts  at a single node and then adds 

edges to it.


• Thus, the intermediate results are always connected


• Maintain a priority queue of all other vertices


• The vertices are ordered by distance to 

A

A



Prim's Algorithm
• We use the same example as before


• We can start at any node
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Prim's Algorithm
• The priority queue tells us which node to select


• After selecting edge and node, we need to update some 
nodes


• Namely those in the adjacency list of the new node
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Prim's Algorithm
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Prim's Algorithm
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Prim's Algorithm
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Prim's Algorithm
• Because Prim's algorithm only selects safe edges, it 

correctly calculates a minimum spanning tree


• The run-time of Prim's algorithm depends on the 
implementation of the priority heap


• The best type is a Fibonacci heap


• In which case the run time is 


• Or we can use a normal priority heap which gives us


•

O( |E | + V log( |V | ))

O(E log(V))


