
Spanning Trees
Thomas Schwarz, SJ

Problem
• Networking: LAN

• Switches are connected by links

• Cycles can create problems:

• Broadcast radiation

• A broadcast or multicast message is repeatedly
received by the same switch and resend and
resend and resend and resend …

Problem
• Solution:

• Use an acyclic subgraph that contains all switches for
broadcasting, multicasting, and in general for
addressing purposes

Trees
• A tree is a graph that is:

• acyclic

• connects all vertices

Trees
• A tree has exactly edges if there are vertices.

• Proof: A tree connects all edges.

• One edge connects two vertices.

• By induction: edges can connect at most
vertices.

n − 1 n

l l + 1

Trees
• Any two out of the following three properties imply the

other one

• is connected

• has no cycles

• has vertices and edges

G

G

G n n − 1

Weighted Graphs
• We look at graphs where each edge has a weight

• Depending on application, some weights can be
negative or all weights have to be positive

3
2

5
2

1

4
7

4
2

3 3

5 2

91

Weighted Graphs
• Other example:

Minimum Spanning Trees
• Given a weighted graph:

• Find a subset of edges such that

• connects all vertices

• is acyclic

• Total weight is minimal

• Called a minimum weight spanning tree, but
"weight" is usually omitted

T

w(T) = ∑
(u,v)∈T

w(u, v) ⟶ ∞

Minimum Spanning Trees
• Two greedy algorithms, Kruskal's and Prim's

• Use a loop invariant:

• Let be the set of edges currently selected

• Invariant: is a subset of some minimum spanning tree

• At each step of the algorithm: only add an edge if
the invariant remains true after inserting the edge

• Such an edge is a safe edge

A

A

(u, v)

Minimum Spanning Trees
• Generic MST algorithm

1.

2. While is not a spanning tree

1. Find a safe edge

2. Add the safe edge to A

3.Return A

A = ∅

A

Minimum Spanning Trees
• A cut is a partition of the vertices of the graph

cut

2

3

5

1

3

7

1
2 3

4
3

23

5

6

Minimum Spanning Trees
• Edges can "cross the cut"

cut

2

3

5

1

3

7

1
2 3

4
3

23

5

6

Minimum Spanning Trees
• Edges are "light" if they cross the cut and no other edge

crossing the cut has a smaller weight

cut

2

3

5

1

3

7

1
2 3

4
3

23

5

6

light edge

Minimum Spanning Trees
• A cut respects if no edge of A crosses the cutA

cut

2

3

5

1

3

7

1
2 3

4
3

23

5

6
A

Minimum Spanning Trees
• Theorem: Let A be a subset of included in some

minimum spanning tree, let be a cut respecting
A and let be a light edge crossing the cut. Then this
edge is safe.

E
(S, E − S)

(u, v)

cut

2

3

5

1

3

7

1
2 3

4
3

23

5

6
A

Minimum Spanning Trees
• Proof:

• We have a subgraph
A that is part of a
minimum spanning
tree

• We have a minimum
weight crossing edge

 crossing the cut
that separates A from
the rest of the graph

T

(u, v)
This set A has two different

connected components and

consists of red vertices

T is given by the fatter edges

v

u cut

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

cut

A

Minimum Spanning Trees
• Case 1: The edge

is part of T

• Then there is
nothing to show
since adding the
edge still gives us a
subgraph that is
part of a minimum
spanning tree

v

u cut

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

cut

A

Minimum Spanning Trees
• Case 2: The edge is not part of T

v

u

5

2

1

1

2

2
1

4

5
2

2

3
2

2

2

2

2

2

2

4

A

A

T
Edges and vertices in A
are red.

Edges in T are fat.

This includes the red

edges.

u and v are at the lower

left

5 8

Minimum Spanning Trees
• In this case, we need to construct a new minimum weight

spanning tree

• Observe that there has to be an edge of T that crosses
the cut

• Because we can travel from every node to every node
in T and not all nodes are in A

Minimum Spanning Trees
• This edge in T that crosses the cut also has weight 2 in

our example, but for sure, it has weight the weight of

• There is another edge

≥
(u, v)

v

u

5

2

1

1

2

2
1

4

5
2

2

3
2

2

2

2

2

2

2

4

A

A

T

5 8

Minimum Spanning Trees
• There has to be a path from to in because is a

spanning tree
u v T T

v

u

Minimum Spanning Trees
• This path has to have at least one edge that crosses the

cut

v

u
v

u

Minimum Spanning Trees
• Take one of these edges and replace it with in

• Call the result

(u, v) T

T′

v

u
v

u

Minimum Spanning Trees
• still connects all of the vertices

• If are two vertices that are connected in T by the deleted
edge:

• Can reroute through the edge

• has a weight changed by replacing the weight of with
the weight of the deleted edge

• But because the weight of is minimal among all edges
crossing the cut and the deleted edge also crossed the cut,

 weight can only be lower

• Thus, after adding the edge fulfills still the invariant. qed

T′

a, b

(u, v)

T′ (u, v)

(u, v)

T′

A (u, v)

Kruskal's Algorithm
• Kruskal's algorithm works by joining subtrees

• Start out with all vertices being their own subtrees

• Thus, the cut is around all of the vertices

• While we have more than one subtree:

• We select a cutting edge (i.e. between different
subtrees) with minimum weight

• This combines two subtrees

Kruskal's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm

2

3

5

1

3

7

1

2 3

4
3

23

5

6

A

Kruskal's Algorithm
• Because Kruskal's algorithm only adds safe edges, it

generates a minimum weight spanning tree

• How to organize it?

• We can order all of the edges by weight

• And then remove edges if they no longer are cutting
edges

• Best way:

• Maintain vertices in the same subtree in a set

• Determine quickly whether something is in a set

Kruskal's Algorithm
• Best solution known to humanity for the disjoint set

problem:

• have vertices organized by a directed edge to the "set
leader"

a

b

c

d

e f

g

h

 {a}, {b}, {c}, {d}, {e}, {f}, {g}, {h}

Kruskal's Algorithm
• If we unite and , we have one point to the other{a} {b}

 {a, b}, {c}, {d}, {e}, {f}, {g}, {h}

a

b

c

d

e f

g

h

Kruskal's Algorithm
• Same if we unite and {g} {h}

a

b

c

d

e f

g

h

{a, b}, {c}, {d}, {e}, {f}, {g, h},

Kruskal's Algorithm
• If we ask whether b and g are in two different

components, we follow the arrow and see whether the
leaders are the same or not.

a

b

c

d

e f

g

h

{a, b}, {c}, {d}, {e}, {f}, {g, h},

Kruskal's Algorithm
• This can be optimized:

• There is the possibilities of having long chains

a

b

c

d
e f

g

h

{a, b, c d}, {e}, {f}, {g, h},

Kruskal's Algorithm
• When we join, we connect one leader to the other leader

• Always make the larger set the head

{a, b, c d}, {e, f} ∪ {g, h, i, j},

a

b

c

d

e

f

g

h

i
j

a

b

c

d

e

f

g

h

i
j

Kruskal's Algorithm
• When we do a look up:

• What is the head of c?

• Follow three links to get to 'h'

a

b

c

d

e

f

g

h

i
j

Kruskal's Algorithm
• When we do a look up:

• Reconnect the node and all we travel to directly to the
head

a

b

c

d

e

f

g

h

i
j

Kruskal's Algorithm
• Best possible case: Every node points directly to the head

a

b

c

d

e

f

g

h

i
j

Kruskal's Algorithm
• With this "disjoint union data structure":

• Maintaining the disjoint set data structure costs
 per operation where is a function that grows

very slowly

• Kruskal's algorithm then runs in time

α(|V |) α

O(|E | log(|E |))

Prim's Algorithm
• Prim's algorithm starts at a single node and then adds

edges to it.

• Thus, the intermediate results are always connected

• Maintain a priority queue of all other vertices

• The vertices are ordered by distance to

A

A

Prim's Algorithm
• We use the same example as before

• We can start at any node

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

3

1

5

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

3

Prim's Algorithm
• The priority queue tells us which node to select

• After selecting edge and node, we need to update some
nodes

• Namely those in the adjacency list of the new node

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

3

1

3

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

6

1

3

3

Prim's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

3

2

1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

6

3

3
3

Prim's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

3
1

<latexit sha1_base64="q63Qazs++CtthGSPYMgdMNr1m40=">AAAB7XicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkYI9FLx4r2A9oQ9lsN+3azSbsToRQ+h+8eFDEq//Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1gFnC/YiOlAgFo2ildl+oELNBueJW3QXIOvFyUoEczUH5qz+MWRpxhUxSY3qem6A/pRoFk3xW6qeGJ5RN6Ij3LFU04safLq6dkQurDEkYa1sKyUL9PTGlkTFZFNjOiOLYrHpz8T+vl2JY96dCJSlyxZaLwlQSjMn8dTIUmjOUmSWUaWFvJWxMNWVoAyrZELzVl9dJ+6rq1ar1+1qlcZPHUYQzOIdL8OAaGnAHTWgBg0d4hld4c2LnxXl3PpatBSefOYU/cD5/AMW9j0c=</latexit>

3

3

3

Prim's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

3

3
3

5

Prim's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

2
3

5

Prim's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

3

5

Prim's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

3

2

Prim's Algorithm

2

3

5

1

3

7

1
2 3

4
3

23

5

6

A

Prim's Algorithm
• Because Prim's algorithm only selects safe edges, it

correctly calculates a minimum spanning tree

• The run-time of Prim's algorithm depends on the
implementation of the priority heap

• The best type is a Fibonacci heap

• In which case the run time is

• Or we can use a normal priority heap which gives us

•

O(|E | + V log(|V |))

O(E log(V))

