Homework 6

due March 7, 2025
Problem 1:

Given an LH file with 6000 buckets, find the addresses of the records with the following keys:

Key Bucket

570046
821365

56847
421651
564040
956869
321872
744050
892987

764908

Problem 2:

Linear Hashing does not distribute records evenly over records. Create a program that
implements LH, storing records in a list. For the purpose of this exercise, we assume that we
only store numbers. Have the program insert random numbers until the LH-file has 4000 or
6000 buckets. Use matplotlib.pyplot in order to graph the number of elements in the bucket
based on the bucket number. The nominal capacity is 10.

import matplotlib.pyplot as plt
import numpy as np

class FileState:
"""Defines the file state of a Linear Hashing structure.”"""

def init (self):
self.level = 0
self.split pointer = 0

def str (self):

nb = self.number of buckets ()
return f" (l={self.level}, s={self.split pointer}, n={nb})"

def number of buckets(self):
return 2**self.level+self.split pointer

def increment (self):
self.split pointer += 1
if self.split pointer == 2**self.level:
self.level += 1
self.split pointer = 0

def address(self, key):
addr = key&(2**self.level-1)
if addr < self.split pointer:
addr = key& (2** (self.level+l)-1)
return addr

class LH:

"""Defines a LH Structure.
The keys are supposed to be strings or anything on which hash is defined.
The insert method insert(self, key, value) inserts a value for a given key.
The lookup method lookup(self, key) returns the inserted value. All
variable types qualify for a variable, but keys need to be
immutable."™""

def init (self, cap):
self.buckets = [[]]
self.file state = FileState()
self.capacity = cap
self.nr records = 0
self.moved = []
self.number of splits = 0

def str (self):
lengths = [str(len(bucket)) for bucket in self.buckets]

return (f"LH with file state {self.file state}\n" + ' '.join(lengths) +

'"\n' + '\n'.join([str (bucket) for bucket in self.buckets]))

def split(self):
self.number of splits += 1
to split = self.file state.split pointer
to _add = len(self.buckets)
ret val = len(self.buckets[to split])
self.file state.increment ()
new bucket = []
new old bucket = []
for key, value in self.buckets[to split]:
new_addr = self.file state.address (abs (hash (key)))

if new addr == to_add:

new bucket.append((key, value))
elif new addr == to_ split:

new old bucket.append((key, value))
else:

print ('trouble')
self.buckets.append (new bucket)
self.buckets[to split] = new old bucket
return ret val

def insert(self, key, value):
address = self.file state.address (abs (hash(key)))
self.buckets[address].append((key, value))
self.nr records += 1
if self.nr records / len(self.buckets) > self.capacity:
self.split()

def lookup(self, key):
address = self.file state.address (abs (hash(key)))
for index in range(len(self.buckets[address])):
if self.buckets[address] [index] [0] == key:
return self.buckets[address] [index]
return None

	Problem 1:
	Problem 2:

