
Midterm Algorithms Solutions
Problem 1:

The algorithm makes four recursive calls on an array of size ￼ . This gives a recurrence of

￼ .

The critical value is ￼ , which is much larger than 2. Thus, we compare a

constant with ￼ and are in Case 1 of the MT. Therefore, ￼ .

Problem 2:

(a) There are ￼ pairs of indices in an array of length ￼ , so that comparing all elements

of the array takes time ￼ .

(b) We walk through the array. We insert the key-value pair (word — index of the word) into the

LH file. If the word is already there, we calculate the distance between the two indices and
compare it to the smallest distance seen. Afterwards, we update the index of the word to
the new index. Since inserts and lookups into an LH file take probabilistically constant time,
the algorithm runs in time ￼ .

Problem 3:
We notice that the cap is not uniquely determined, but can be chosen to be equal to an actual
salary. We start out by ordering the array of salaries from smallest to largest. This takes
￼ time. Let this array be ￼ . If the cap is smaller than ￼ , the payroll is
￼ . If the cap is ￼ , then the payroll is ￼ . If the cap is ￼ , then the payroll is

￼ ,

which is equal or larger than before. If the cap is ￼ , then the payroll is

 ￼ .

In general, if the cap is ￼ , then the pay-roll is

 ￼ .

These potential payrolls increase with ￼: ￼ . Furthermore,

￼

so that we can calculate all potential payrolls in linear time. Thus, given the payroll, we
calculate the largest index ￼ that is smaller or equal to the target payroll. This gives us the cap
as ￼ .

Problem 4:
def minmax(array):

2n
3

T (n) = 4(
n

3/2
)+const

c = log 3
2
(4) ≈ 3.419

nc−ϵ T (n) = Θ(nc)

n(n − 1)
2

n

O(n2)

O(n)

Θ(n log(n)) [s1, s2, s3, …, sn] s1
nC < ns1 s1 P1 = ns1 s2

P2 = s1 + (n − 1)s2
s3

P3 = s1 + s2 + (n − 2)s3
si

Pi = s1 + s2 + … + si−1 + (n − i + 1)si
i P1 ≤ P2 ≤ P3 ≤ … ≤ Pn

Pi = Pi−1 + (si − si−1)

Pi
si

 n = len(array)
 if len(array) == 1:
 return array[0], array[0]
 min1, max1 = minmax(array[:n//2])
 min2, max2 = minmax(array[n//2:])
 return min(min1, min2), max(max1, max2)

The runtime is given by the recurrence ￼ . The critical value is
￼ . As ￼ , Case 1 of the MT applies and ￼ .

Problem 5:
Since ￼ , the split pointer is 1 and the level is 3. The buckets are 20 —> Bucket 4, 25
—> Bucket 1, 30 —> Bucket 6, 35 —> Bucket 3, and 40 —> Bucket 8.

Problem 6:

T (n) = 2T (n /2)+const
log2(2) = 1 const = O(n1−1) T (n) = Θ(n1)

9 = 23 + 1

cat hen

bat dik fly koi rat

eel elkcod cow fox gnu owl olmide jay rok yak zhoboaant ape

Insert into a leaf, which leads to an overflow. The overflow can only be remedied by a split

cat hen

bat dik fly koi rat yak

eel elkcod cow fox gnu owl olmide jayboaant ape rok zho

The split also leads to an overflow, that cannot be remedied by a rotation, so we have another split.

cat hen rat

bat dik fly

eel elkcod cow fox gnu owl olmide jayboaant ape rok zho

koi yak

We have another overflow, that leads to a final split.

bat dik fly

eel elkcod cow fox gnu owl olmide jayboaant ape rok zho

koi yak

cat

hen

rat

cat hen

bat dik fly koi rat

eel elk emucod cow fox gnu owl olmide jay yak zhoboaant ape

After insertion in the leaf, we have an overflow. Rotates are not possible, so we have a split.

cat hen

bat dik elk fly koi rat

cod cow fox gnu owl olmide jay yak zhoboaant ape eel emu

cat hen

bat dik elk fly koi rat

cod cow fox gnu owl olmide jay yak zhoboaant ape eel emu

We have another overflow, but this time, we can rotate: dik goes up, cat goes down

dik hen

bat cat elk fly koi rat

cod cow fox gnu owl olmide jay yak zhoboaant ape eel emu

	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:
	Problem 5:
	Problem 6:

