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Computation Principles
• Representations hold information


• Computation is a sequence of representations


• Computations can be open or closed


• Computations have characteristic speeds of resolution


• Complexity measures the time or space essential to 
complete computations


• Finite representations of real processes always contain 
errors.



Classical Computation 
• Data is represented by elements (switches) that have two 

or more states


• For technical reasons today: usually two states


• Information in such a switch is called a bit



Classical Computation
• What is presented to the programmer:


• Computer reads instructions from memory


• Computer acts on instructions by changing memory 
locations


• Example:  addi x, 5


• Load x into accumulator, load 5 into a register, add 
results, move accumulator results back into 
memory where x is located



Standard Model of 
Computing is an Idealization
• Instructions do not take the same amount of time


• Almost since the beginning of computer architecture


• Idealization: Fetch-Execute Cycle with fixed timing


• Instructions are not performed serially


• Pipelining of instructions


• Reordering of instructions by compiler or architecture



Standard Model of 
Computing is an Idealization
• Memory access is not uniform


• Early modification: Virtual Memory



Standard Model of 
Computing is an Idealization
• Modern modification:


• Registers 


• Cache Level 1


• Cache Level 2


• Cache Level 3


• Main Memory (DRAM)


• Storage


• Buffer - Cache - HDD block / SSD page



Standard Model of 
Computing is an Idealization
• Multi-threaded (e.g. multi-core) :


• Many instructions & access to variables are not thread-
safe


• E.g.: Can only argue that a flag is either set or not if 
the flag is "atomic" (with software and hardware 
support)


• Multi-core architecture manages to prevent a processor 
from having a different view of memory than another 
processor


• But this is getting more and more difficult



Standard Model of 
Computing is an Idealization
• Storage and Memory systems prioritize reads over writes


• In case of failure, bad things can happen:


• Can store a block


• Read from this block


• Power failure


• Read from the block:


• Value has changed



Standard Model of 
Computing

• Contract between system and programmer:


• System does what programmer wants, but in a 
different, usually faster way


• With a few exceptions, which makes multi-threaded 
computing so challenging



Standard Model of 
Computing

• Turns out that the optimizations of modern computing 
systems do not create genuine new capabilities


• We can emulate a modern system using an old one


• We can even emulate a modern system using a model of 
computing used in the 30s and 40s to model what 
Mathematics can compute:


• Turing machine



Quantum Computing
• Data is represented by qubits


• qubits can exist as a super-imposition of two states


• Qubit state is a linear combination of 0 and 1


• ,  probability amplitude


• Probability of measuring qubit as zero is , as 1 is 
, and so 


• qubits can be entangled: State of one qubit is 
correlated to the state of another qubit
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Quantum Computing
• Once a qubit is measured, it is either 0 or 1


• Before a qubit is measured, it has an infinite amount of 
information



Quantum Computing
• A quantum logic gate operates on a small number of qubits


• Representation: 


•
Represent a register of  qubits as  


• Gate can be represented as unitary matrices 


• Actual hardware gates introduce errors


• Need quantum error correction
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Quantum Computing vs. 
Classical Computing

• No known way to simulate a quantum computational 
model with a classical computer


• A quantum computer with  qubits with  quantum 
gates can be simulated with a classical circuit with 

 classical gates

S(n) T(n)

O(2S(n)T(n)3)



Quantum Computing vs. 
Classical Computing

• There are some quantum algorithms that are better than 
classical algorithms:


• Grover’s algorithm: Search over  items in an 
unstructured database in time 


• Shor’s algorithm: Can factor a number  in time 
polynomial in .
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Quantum Computing versus 
Classical Computing

• Current state of the art:


• Quantum computers can be simulated by classical 
computers (with exponential slowdown)


• But there are certain quantum computations which we 
do not know how to simulate classically without 
exponential slowdown



Limits to Computation
• Landauer’s principle (debated)


• Lower theoretical limit of energy consumption of 
computation


• Erasing one bit of information takes , 
where  is the Boltzmann constant and  is 
temperature in .
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DNA Computation
• Adleman’s experiment


• Given a graph and two vertices, is there a path 
between them that visits all other vertices exactly once


• Encode vertices as a 20 elements nucleotide sequence


• Encode edges as last 10 nucleotides of starting vertex 
with first 10 nucleotides of ending vertex


• DNA ligase glues DNA molecules together, 
corresponding to a path



DNA computing
• Edges are complemented to allow binding

vertex 1 vertex 2

edge 1-2



DNA computing
• Combination of DNA strands forms all possible paths


• Use Polymerase Chain Reaction (PCR) to make multiple 
copies of only those strands that have the right starting 
and ending points


• Use electrophoresis to force DNA molecules to travel 
through a gel


• This separates strands by length


• We now have paths of the correct length



DNA computing
• Tag city strands with a magnetic substance and mix with 

the rest


• This allows to extract all paths that have a given vertex 
in them


• Do this for all cities


• Resulting strands are the ones representing a path of 
the right length with all the cities in them


• This is a solution



DNA computing versus 
classical computing

• Adleman’s experiment showed an enormous number of 
computation done in short time


• This is because DNA can store information at a very 
high density: 18 Mbits per inch


• But:


• DNA steps still take substantial time


• Need to keep very pure reagents in a small temperature 
range, so DNA computing is expensive


