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The Change Making 
Problem

• A given country uses a weird set of coins


• 1, 3, 5, 8


• How do you make change with the least number of coins?


• With these coins, it is not so obvious


• Normally, we can just start out with the largest coin that 
fits, but not in this case


• Making change for 15:


• Use an 8, a 5 and two 1s


• But three 5s is better



The Change Making 
Problem

• To solve the change making problem, we can use 
dynamic programming


• Some notation:   value of coin 


• Best number of coins for change of  is


• Best number of coins for change of  plus one


• Best number of coins for change of  plus one


• …


• Best number of coins for change of  plus one

vi i, i ∈ {1,...,n}

x

x − v1

x − v2

x − vn



The Change Making 
Problem

• To organize the calculation


• Create a tableau


• For row , column : 


• How many coins to make change for an amount of 
 with coins 

i j

i 1,…, j



The Change Making 
Problem

• Example:  Coins with values 
1, 3, 5, 8 to make change of 
15

Value ones threes five eights
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15



The Change Making 
Problem

• Example:  Coins with values 
1, 3, 5, 8 to make change of 
15


• First column is easy

Value ones threes five eights
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15



The Change Making 
Problem

• Second column asks how many 
threes I should use


• Example for value 10:


• Can use none


• Cost is 10


• Can use one three


• Cost is 1+7 


• Can use two threes


• Cost is 2+4


• Can use three threes


• Cost is 3+1

Value ones threes five eights
0 0 0 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 ???
11 11
12 12
13 13
14 14
15 15



The Change Making 
Problem

• Second column asks how 
many threes I should use


• Formula is





  costs of making change 

of  with coins up to 


  costs of using  coins of 
value 

min{Ti−vjν,j−1 + ν |ν = 0,1,…, ⌊
i
vi

⌋}

Ti−vjv,j−1

i − νvj j − 1

+ν ν
vj

Value ones threes five eights
0 0 0 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 ???
11 11
12 12
13 13
14 14
15 15



The Change Making 
Problem

• Our alternatives are:


• No threes: 10


• One three: 7+1=8


• Two threes 4+2=6


• Three threes 1+3=4


Value ones threes five eights
0 0 0 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 4
11 11
12 12
13 13
14 14
15 15



The Change Making 
Problem

• Filling in the other values
 Value ones threes five eights
0 0 0 0 0
1 1 1
2 2 2
3 3 1
4 4 2
5 5 3
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• The first values are simple 
since we cannot use a five


Value ones threes five eights
0 0 0 0 0
1 1 1
2 2 2
3 3 1
4 4 2
5 5 3
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• The first values are simple 
since we cannot use a five


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 5:


• Can use a five


• Can not use a five:


• 3 coins according to 
previous column


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 6:


• Can use 5


• Costs: 1+1


• Cannot use 5


• Costs 2


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 8:


• Can use 5


• Costs: 1+1


• Cannot use 5


• Costs 4


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 9:


• Can use 5


• Costs: 2+1


• Cannot use 5


• Costs 3


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 10:


• Can use two 5s


• Can use one 5


• Costs: 3+1


• Can use no 5s


• Costs 3


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 11:


• Can use two 5s


• Costs 2+1


• Can use one 5


• Costs: 2+1


• Can use no 5s


• Costs 5


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 12:


• Can use two 5s


• Costs 2+2


• Can use one 5


• Costs: 3+1


• Can use no 5s


• Costs 4


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 13:


• Can use two 5s


• Costs 2+1


• Can use one 5


• Costs: 4+1


• Can use no 5s


• Costs 5


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6
15 15 5



The Change Making 
Problem

• Now on to five


• At value 14:


• Can use two 5s


• Costs 2+2


• Can use one 5


• Costs: 3+1


• Can use no 5s


• Costs 6


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6 4
15 15 5



The Change Making 
Problem

• Now on to five


• At value 15:


• Can use three 5s


• Costs 3


• Can use two 5s


• Costs 2+3


• Can use one 5


• Costs: 4+1


• Can use no 5s


• Costs 5


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6 3
15 15 5 3



The Change Making 
Problem

• Now on to eights


• At value 15:


• Can use one eight


• Costs 1+3


• Can use no eights


• Costs: 3


Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6 3
15 15 5 3 3



The Change Making 
Problem

• Alternative: Memoization and Recursion


• Instead of using a tableau 


• (or rather two, one to remember the best choice)


• Can use recursion and memoization


• Simplest form:


• What was the last coin that was added


• It has to be one of the coins: e.g. 1, 3, 5, or 8


• The costs are the cost of making change for the 
amount minus the value of the coin plus one for the 
coin itself



The Change Making 
Problem

• Alternative: Memoization and Recursion


• Recursion





• where the minimum is taken over all different coin 
values


• We also write the coin which causes the minimum 
to be selected

c(n) = min{c(n − vi) + 1}



The Change Making 
Problem

• For memoization in Python:


• have a global dictionary for the costs and the best 
choice of coin (last_coin)


• Also, add the values of the coins in a list

last_coin = {0:0} 
costs = {0:0} 
values = [1,3,5,7,8]



The Change Making 
Problem

• Here is very simple Python code
def getChange(n): 
    if n in costs: 
        return costs[n] 
    
    best = 100000 
    bestcoin = 0 
    for x in range(len(values)): 
        if values[x] > n: 
            break 
        alternativeCost = getChange(n-values[x])+1 
        if alternativeCost < best: 
            best = alternativeCost 
            bestcoin = values[x] 
    costs[n] = best 
    last_coin[n] = bestcoin 
    return best



The Change Making 
Problem

• And here is the output


• Amount to make change for 


• Number of coins needed


• Last coin used


• Example:  


• For 20, use a 5, left 15


• For 15, use a 7, left 8


• For 8, use 8

0 0 0 
1 1 1 
2 2 1 
3 1 3 
4 2 1 
5 1 5 
6 2 1 
7 1 7 
8 1 8 
9 2 1 
10 2 3 
11 2 3 
12 2 5 
13 2 5 
14 2 7 
15 2 7 
16 2 8 
17 3 1 
18 3 3 
19 3 3 
20 3 5



The Change Making 
Problem

• But we do not have this problem with normal coin sets


• US$-cents: 1, 5, 10, 25, 100


• Euro-cents: 1, 5, 10, 20, 50, 100, 200



The Change Making 
Problem

• Cashier's Algorithm


• Always select the largest coin smaller or equal the current 
amount


• Will not always work


• Another example:  US Postage Stamps before forever 


• 1, 5, 25, 32, 100


• Make change for 121


• Cashier's algorithm: 100+5+5+5+5+1


• Better choice 32+32+32+25



The Change Making 
Problem

• But sometimes the Cashier's Algorithm is the best


• Assume that we have coins of 1, 5, 10, 20, and 50


• Proof by induction that the cashier's algorithm always give 
the best change


• Represent the change as an array 


• Coefficient  of array:  number of -th coins


• Example: 


• one way of making change for 213

i i

3 2 4 8
1 5 10 20

0
50



The Change Making 
Problem

• Proof:


• Assume  is the result 
of the cashier's algorithm for an amount of





• Assume  is an 
alternative with less coins for the same amount





but 

C = [c1, c5, c10, c20, c50]

c1 + c5 ⋅ 5 + c10 ⋅ 10 + c20 ⋅ 20 + c50 ⋅ 50

A = [a1, a5, a10, a20, a50]

a1 + a5 ⋅ 5 + a10 ⋅ 10 + a20 ⋅ 20 + a50 ⋅ 50

a1 + a5 + a10 + a20 + a50 < c1 + c5 + c10 + c20 + c50



The Change Making 
Problem

• Proof:


• Want to show that .A = C



The Change Making 
Problem

• Proof:


• Lemma 1: An optimal solutions has not more than 
four pennies


• Otherwise replace with a 5 cent piece


• Lemma 2: An optimal solution has not more than 
one 10 cent piece


• Otherwise replace with a 20 cent piece


• Lemma 3: An optimal solution cannot have two 
twenty cent pieces and one 10 cent piece


• Otherwise replace with a 50 cent piece



The Change Making 
Problem

• Proof:


• Lemma 5: Maximum number of pennies in an 
optimal solution is four


• Follows from Lemma 1


• Lemma 6: If the optimal solution has only 
pennies and five cents, then the amount is at 
most nine


• Follows from Lemma 2 and Lemma 5



The Change Making 
Problem

• Lemma 7:  The maximum amount for an optimal 
solution with only pennies, 5 cent and 10 cent 
pieces is 19


• Lemma 8: The maximum amount for an optimal 
solution with only 1 cent, 5 cent, 10 cent, and 20 
cent pieces is 49



The Change Making 
Problem

• Proof:


• Assume that the number of 50 cent coins in A and 
C differ.


• Because of how C is defined, the number of 50 
cent coins in A has to be lower .  


• However, the difference needs to be made up with 
coins of smaller value


• But an optimal solution cannot have more than 49 
cents in smaller coins


• Contradiction

a50 < c50



The Change Making 
Problem

• Proof:


• So, the number of 50 cent coins does not differ


• If there are   50 cent coins, then look at the 
best solution for amount-  coins.


•  and  with the 50 cent coins removed are 
still two different solutions for the same amount


• Now apply the same argument to the 20 cent 
coins.


• Et cetera

x
x

C A



The Change Making 
Problem

• We call the cashier's algorithm a greedy algorithm:


• We solve the problem by going to a smaller problem


• E.g. Making change for 134 cents. 


• Lay out 50 cents


• Making change for 84 cents.


• …


• At each step, we select something optimal



Greedy Algorithms
• Many algorithms run from stage to stage


• At each stage, they make a decision based on the 
information available


• A Greedy algorithm makes decisions 


• At each stage, using locally available information, the 
greedy algorithm makes an optimal choice


• Sometimes, greedy algorithms give an overall optimal solution


• Sometimes, greedy algorithms will not result in an optimal 
solution but often in one good enough



Divisible Items Knapsack 
Problem

• Given a set of items  


• Each item has a weight  


• Each item has a value  


• Select a subset


• Constraint:


• Objective Function:      

S

M ⊂ S

∑
x∈M

w(x) < W

w(x)
v(x)

∑
x∈M

v(x) ⟶ max



Divisible Items Knapsack 
Problem

• Order all items by impact


•  


• In order of impact (highest first), ask whether you want to 
include the item


• And you include it if the sum of the weights of the items 
already selected is smaller than 

impact(x) =
v(x)
w(x)

W



Optimal Rental
• Set of activities   


• Each activity has a start time and a finish time


•  


• Each activity needs to use your facility


• Only one activity at a time


• Make the rental agreements that maximize the number 
of rentals 

S = {a1, a2, …, an}

0 ≤ si < fi < ∞



Optimal Rental
• Two activities      and      are compatible iff


•    


• This means that activity            finishes before activity   

ai aj

[si, fi) ∩ [sj, fj) = ∅

i < j j



Optimal Rental
• Example:


• A compatible set is 


• Another compatible set is   

{A1, A5, A8, A10}

{A3, A9}

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

f 6 7 9 12 13 15 18 19 20 21



Optimal Rental
• Optimal rental with a dynamic programming algorithm


• Subproblems:  Define        to be the set of activities that 
start after       finishes and finish before      startsai

Sik
ak

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

f 6 7 9 12 13 15 18 19 20 21

S1,8 = {a5}



Optimal Rental
• We want to find an optimal rental plan for  


• Assume that there is an optimal solution that contains 
activity


• By selecting     , we need to decide what to do with the 
time before       starts and after       finishes


• These sets are        and  

Sik

aj ∈ Si,k

aj
aj aj

Sij Sjk



Optimal Rental
• Assume that        is part of an optimal solution        for


• Then       is divided into the ones that end before     and 
the ones that start after


•    

Ai,kaj Si,k

Ai,k aj
aj

Ai,j = Ai,k ∩ Si,k Aj,k = Ai,k ∩ Sj,k

Ai,k = Ai,j ∪ {aj} ∪ Aj,k



Optimal Rental

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk



Optimal Rental
• Clearly,        is an optimal solution for 


•       is an optimal solution for


• For if not, we could construct a better solution for 

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk

Ai,j Si,j

Aj,k Sj,k

Si,k



Optimal Rental
• We can therefore solve recursively the problem for         by 

looking at all possible activities for


• Define                   Max number of compatible activities 
in


• Then:


• The 0 is necessary because there might be no 
activity in  

Si,k
aj

C[i, k] =
Si,k

C[i, k] = max(0, max (C[i, j] + C[ j, k] + 1 |aj ∈ Si,k))

Si,k



Optimal Rental
• The recursion leads to a nice dynamic programming 

problem

C[i, k] = max(0, max (C[i, j] + C[ j, k] + 1 |aj ∈ Si,k))



Optimal Rental
• But can we do better?



Optimal Rental
• Start out with the initial problem


• Select the activity that finishes first


• this would be 


• This leaves most space for all other activities


• Call  the set of activities compatible with 


• These are those starting after 


• Similarly, call  the set of activities starting after  

S1 a1

a1

Sk ak

a1



Optimal Rental
• Theorem:  For any non-empty problem  let   be the activity 

with the smallest end time.   Then  is contained in an optimal 
solution   


• Proof:  


• Let  be a solution


• i.e. the maximum sized compatible subset in 


• Let  be the activity with earliest finish time


• If  then we are done

Sk am
am

Ak

Sk

a1 ∈ Ak

am = a1



Optimal Rental
• Theorem:  For any non-empty problem  let   be the 

activity with the smallest end time.   Then  is contained 
in an optimal solution   


• Proof:  


• Otherwise replace  with  in     


•   


• Since  is the first to finish, this is a set of 
compatible activities


• Therefore, there exists an optimal solution with  

Sk am
am

a1 am Ak

A′￼k = Ak − {a1} ∪ {am}

am

am



Optimal Rental
• Result of the Theorem:


• We can find an optimal solution (but not necessarily 
all optimal solutions) by always picking the first one 
to finish.



Optimal Rental
• Example


• Select     


• Exclude       ,     , and       as incompatible


• Choose       ,       ,  and         for the complete solution

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

f 6 7 9 12 13 15 18 19 20 21

a1

a2 a3 a4

a5 a8 a10



Greedy Algorithms
• Greedy algorithms


• Determine the optimal substructure


• Develop a recursive solution


• Show that making the greedy choice is best


• Show that making the greedy choice leads to a similar 
subproblem


• Obtain a recursive algorithm


• Convert the recursive algorithm to an iterative algorithm 


