Greedy Algorithms

Thomas Schwarz, SJ

The Change Making
Problem

* A given country uses a weird set of coins
e 1,3,5,8
* How do you make change with the least number of coins?

e With these coins, it iIs not so obvious

* Normally, we can just start out with the largest coin that
fits, but not in this case

* Making change for 15:
* Usean 8,abandtwo 1s

e But three 5s Is better

The Change Making
Problem

* Jo solve the change making problem, we can use
dynamic programming

e Some notation: v, value ofcoini, i € {1,...,n}
e Best number of coins for change of x is

e Best number of coins for change of x — v, plus one

e Best number of coins for change of x — v, plus one

e Best number of coins for change of x — v, plus one

The Change Making
Problem

* Jo organize the calculation

e Create a tableau

e Forrow 1, column J:

* How many coins to make change for an amount of
i with coins 1,...,J

The Change Making
Problem

e Example: Coins with values Value ones threes five eights
1, 3, 5, 8 to make change of
15

= N

p
3
4
5
6
7
8
9

The Change Making
Problem

e Example: Coins with values Value ones threes five eights
1, 3, 5, 8 to make change of
15

b
—

 First column is easy

p
3
4
5
6
7
8
9

© 00 N O O & WM

The Change Making
Problem

e Second column asks how many Value ones threes five eights

threes | should use 0] 0 0 0 0
1 1
e Example for value 10: o 5
e Can use none 3 3
4 4
e Costis 10 5 5
6 6
e (Can use one three - ;
e Costis 1+7 8 8
9 9
e Can use two threes 1 299
e Costis 2+4 i
12
e (Can use three threes 13
14

e Costis 3+1

The Change Making
Problem

e Second column asks how Value ones threes five eights

many threes | should use 0 0 0 0 0
1 1
e Formulais 2 2
. 3 3
: ! 4 4
min{7;_,,; +viv=0,1,.., [7J] - 5
l 6 6
. 7 7
Ti_vjv, j—1 costs of making change g 6
of i — vv; with coins up to j — 1 < .

J 1 27?7

_ _ 11
+v costs of using v coins of 19
value v; 13
14

The Change Making
Problem

® Our alternatives are: Value ones threes five eights
0 0 0 0 0
e No threes: 10 1 1
2 2
e One three: 7+1=8 3 3
4 4
e Two threes 4+2=6 g g
e Three threes 1+3=4 ; ;
9 9
1 4
11
12
13
14

The Change Making
Problem

e Filling in the other values Value ones threes five eights
0 0 0 0 0
L 1 1
2 2 2
3 3 1
4 4 2
5 5 3
6 6 2
7 / 3
8 8 4
) 9 3

10 4
11 5
12 4
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
 The first values are simple L 1 1
since we cannot use afive [- °
4 4 2
5 5 3
6 6 2
7 ! 3
8 8 4
9 9 3
10 4
11)
12 4
13 5
14 6
15)

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
 The first values are simple L 1 1 1
since we cannot use afive [N ° 2 ¢
4 4 2 2
5 5 3
6 6 2
7 ! 3
8 8 4
9 9 3
10 4
11)
12 4
13 5
14 6
15)

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
e At value 5: 1 1 1 1
2 2 2 2
e Can use a five 3 3 1 1
4 4 2 2
e Can not use a five: g g g 1
e 3 coins according to ; ; 2
previous column 9 9 3
10 4
11 5
12 4
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
e At value 6: 1 1 @ 1
2 2 2 2
e Canuse>5 3 3 1 1
4 4 2 2
e Costs: 1+1 5 5 3 1
6 6 @) 2
e Cannot use 5 ; ; 2
e Costs? 2 190 2
11 5
12 4
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
e At value 8: 1 1 1 1
p) 2 2 2
e Canuse>5 3 N ORE
4 4 2 2
* Costs: 1+1 - >
e Cannot use 5 ; ; C?D g’
e Costs 4 9 190 2
11 5
12 4
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
e At value 9: L 1 1 1
2 2 2 2
e Canuse>5 3 3 é) 1
4 4 2
e Costs: 2+1 g g g ;
e Cannot use 5 ; ; 2 g’
e Costs 3 2 190 C? <
11 5
12 4
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 (0) 0 0
e At value 10: 1 1 1 1
2 2 2 2
e Can use two 5s 3 3 1 1
4 4 2% 2%
e Canuseoneb 5 5 (3 1
6 6 2 2
e Costs: 3+1 7 7 3 3
8 8 4 2%
e Can use no 5s 9 9 3 3
10 2%
e Costs 3 11 C;D
12 4
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
e At value 11: 1 1 @ 1
2 2 2 2
e Can use two 5s 3 3 1 1
e Costs 2+1 ‘5‘ ;‘ g f
e Canuseoneb 6 6 2 D
7 7 3 3
e Costs: 2+1 8 8 4 2
9 9 3 3
e Can use no 5s 10 4 5
e Costs 5 1; C? 3
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
e At value 12: 1 1 1 1
2 2 2
e Can use two 5s 3 3 C?]
e Costs 2+2 ‘5‘ ;‘ g f
e Canuseoneb 6 6 2 2
7 7 3 3
e Costs: 3+1 8 8 4 2
9 9 3 3
e Can use no 5s 10 4 5
e Costs 4 11 o 3
12 (@) 4
13 5
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
* At value 13: 1 1 1 1
P 2 2 2
e Can use two 5s 3 3 @ 1
e Costs 2+1 ‘5‘ ;‘ g f
e Canuseoneb 6 6 2 2
7 7 3 3
e Costs: 4+1 8 8 (a) 2
9 9 3 3
e Can use no 5s 10 4 5
e Costs 5 1; Z 2
13 (5 3
14 6
15 5

The Change Making
Problem

e Now on to five Value ones threes five eights
0 0 0 0 0
e At value 14: 1 1 1 1
2 2 2 2
e Can use two 5s 3 3 1 1
4 4 O 2
e Costs 2+2 5 5 3 1
6 6 2 2
e Can useoneb 7 7 3 3
8 8 4 2
e Costs: 3+1 9 9 B 3
10 4 2
e Canuse no 5s 11 5 3
12 4 4
* Costs 6 13 5 3
14 (6) 4
15 5

The Change Making
Problem

* Now on to five Value ones threes five eights
. . 0 0 (0) 0 0
At value 15: ; 1 1 1
e Can use three 5s 2 2 2 2
. 3 3 1 1
e Costs 3 4 4 5 5
e Can use two 5s S S ©, 1
6 6 2 2
e Costs 2+3 v v 3 3
e Canuseoneb 8 8 4 2
9 9 3 3
e Costs: 4+1 10 (a) 2
11 5 3
Can use no 5s 1o A A
e Costs 5 13 5 3
14 6 3
15 (5 3

The Change Making
Problem

e Now on to eights Value ones threes five eights
0 0 0 0 0
e At value 15: 1 1 1 1
2 2 2 2
e Can use one eight 3 3 1 1
4 4 2 2
e Costs 1+3 2 : D ;
6 6 2 2
e Can use no eights ! ! 3 ®
8 8 4 2
e Costs: 3 9 . . .
10 4 2
11 5 3
12 4 4
13 5 3
14 6 3
15 5 ©) 3

The Change Making
Problem

e Alternative: Memoization and Recursion
e |nstead of using a tableau
e (or rather two, one to remember the best choice)
e Can use recursion and memoization
e Simplest form:
e What was the last coin that was added
e |t has to be one of the coins: e.g. 1, 3, 5, or 8

 The costs are the cost of making change for the
amount minus the value of the coin plus one for the
coin itself

The Change Making
Problem

e Alternative: Memoization and Recursion
e Recursion
c(n) =min{c(n —v,) + 1}

e where the minimum is taken over all different coin
values

e We also write the coin which causes the minimum
to be selected

The Change Making
Problem

 For memoization in Python:

* have a global dictionary for the costs and the best
choice of coin (last_coin)

e Also, add the values of the coins in a list

last coin = {0:0}
costs = {0:0}
values = [1,3,5,7,8]

The Change Making
Problem

 Here is very simple Python code

def getChange (n) :
1f n 1n costs:
return costs|[n]

best = 100000

bestcolin = 0
for x 1n range(len(values)) :

1f values[x] > n:

break
alternativeCost = getChange (n-values[x])+1

1f alternativeCost < best:
best = alternativeCost

bestcolin = values|[x]
costs[n] = best
last coin[n] = bestcoiln
return best

The Change Making
Problem

 And here is the output
e Amount to make change for
* Number of coins needed
e Last coin used
e Example:
e For20,useab, left 15
e Fori15,usea’v, left8

e For 8, use 8

QO J O Ul dxWWDNEHEH O

N e e
O WO -Joy U WN P O

N RPEFRPNONEREREDNNREREDNN RO

W W W W NN

= oo J b Ol Wk Pk O

O W W HEFk o JJ o 0o w Ww

The Change Making
Problem

 But we do not have this problem with normal coin sets
e US$-cents: 1, 5, 10, 25, 100
e Euro-cents: 1, 5, 10, 20, 50, 100, 200

The Change Making
Problem

e Cashier's Algorithm

* Always select the largest coin smaller or equal the current
amount

* Will not always work
* Another example: US Postage Stamps before forever
e 1,5, 25, 32,100
* Make change for 121
 Cashier's algorithm: 100+5+5+5+5+1
* Better choice 32+32+32+25

The Change Making
Problem

e But sometimes the Cashier's Algorithm is the best
e Assume that we have coins of 1, 5, 10, 20, and 50

* Proof by induction that the cashier's algorithm always give
the best change

* Represent the change as an array

e Coefficient 1 of array: number of i-th coins

 Example: 1 5 10 20 50

(e 2 Ja 8 o)

 one way of making change for 213

The Change Making
Problem

e Proof:

e Assume C = [c¢y, C5, €10, Co» C50] is the result
of the cashier's algorithm for an amount of

ci+cs- S+ 104y 20 + 55 - S0

- Assume A = [ay, as, a;q, dyg, A50] is an
alternative with less coins for the same amount

i " /
L BURO /',

BN/
a1+a5-5+a10- 10+a20'20+a50‘50

but
a; +as + ayg+ arg+ adsg < ¢y + C5+ Cpg T Cyp T C5

The Change Making
Problem

e Proof:

e Want to show thatA = C.

The Change Making
Problem

e Proof:

e |Lemma 1: An optimal solutions has not more than
four pennies

e Otherwise replace with a 5 cent piece

e Lemma 2: An optimal solution has not more than
one 10 cent piece

e Otherwise replace with a 20 cent piece

e | emma 3: An optimal solution cannot have two
twenty cent pieces and one 10 cent piece

e Otherwise replace with a 50 cent piece

The Change Making
Problem

e Proof:

e Lemma 5: Maximum number of pennies in an
optimal solution is four

e Follows from Lemma 1

e Lemma 6: If the optimal solution has only
pennies and five cents, then the amount is at
most nine

e Follows from Lemma 2 and Lemma 5

The Change Making
Problem

e Lemma 7. The maximum amount for an optimal
solution with only pennies, 5 cent and 10 cent
pieces is 19

e Lemma 8: The maximum amount for an optimal
solution with only 1 cent, 5 cent, 10 cent, and 20
cent pieces is 49

The Change Making
Problem

e Proof:

e Assume that the number of 50 cent coins in A and
C differ.

e Because of how C is defined, the number of 50
cent coins in A has to be lower a5, < 5.

* However, the difference needs to be made up with
coins of smaller value

 But an optimal solution cannot have more than 49
cents in smaller coins

e Contradiction

The Change Making
Problem

e Proof:

e S0, the number of 50 cent coins does not differ

e |f there are x 50 cent coins, then look at the
best solution for amount-x coins.

e (and A with the 50 cent coins removed are
still two different solutions for the same amount

* Now apply the same argument to the 20 cent
coins.

e Et cetera

The Change Making
Problem

* \We call the cashier's algorithm a greedy algorithm:

* We solve the problem by going to a smaller problem
 E.g. Making change for 134 cents.
 |Lay out 50 cents
* Making change for 84 cents.

* At each step, we select something optimal

Greedy Algorithms

Many algorithms run from stage to stage

* At each stage, they make a decision based on the
information available

A Greedy algorithm makes decisions

* At each stage, using locally available information, the
greedy algorithm makes an optimal choice

Sometimes, greedy algorithms give an overall optimal solution

Sometimes, greedy algorithms will not result in an optimal
solution but often in one good enough

Divisible Iltems Knapsack
Problem

e Given a set of items S
e Each item has a weight w(x)
e Each item has a value Vv(x)
e Selectasubset M C S
e Constraint: Z wlx) < W

xem

e Objective Function: Z v(X) —> max
xeM

Divisible Iltems Knapsack
Problem

 QOrder all items by impact
1469
w(x)

* In order of impact (highest first), ask whether you want to
include the item

e Impactx) =

 And you include it if the sum of the weights of the items
already selected is smaller than W

Optimal Rental

e Set of activities S = {a,a,, ...,a,}
 Each activity has a start time and a finish time
e 0y <f;<0o0
 Each activity needs to use your facility
 Only one activity at a time

* Make the rental agreements that maximize the number
of rentals

Optimal Rental

* Two activities a; and a; are compatible iff

° [Si’ f;) N [Sj, f]) =

* This means that activity i < finishes before activity j

Optimal Rental

e Example:] 12345678910

1 302 6 5 6151819

6 7 9121315181920 21

e A compatible set is {A19A59A89A10}

» Another compatible set is {A3, Ag}

Optimal Rental

* Optimal rental with a dynamic programming algorithm

* Subproblems: Define §;, to be the set of activities that
start after a; finishes and finish before a, starts

12345678 910

1 302 6 5 6151819

6 7 9121315181920 21

Sl,8 = {45}

Optimal Rental

e We want to find an optimal rental plan for Sl-k

 Assume that there is an optimal solution that contains
activity a; € §;

* By selecting d;, we need to decide what to do with the

time before a; starts and after a; finishes

*» These setsare J; and S

Optimal Rental

e Assume that a; IS part of an optimal solution Ai,k for Sl-,k

* Then A, is divided into the ones that end before a; and

]
the ones that start after a;

o« A=A NS A=A, N5;

Optimal Rental

Optimal Rental

* Clearly, A, ; is an optimal solution for 5, ;
* A, is an optimal solution for 5, ;

 For if not, we could construct a better solution for 3;

Optimal Rental

* We can therefore solve recursively the problem for 5;, by

looking at all possible activities for a;

e Define (i, k] = Max number of compatible activities
in S;

e Then:
C[i, k] = max(0, max (C[i, j1 + C[j, k] + 1|a; € S;;))

e The 0 is necessary because there might be no
activity in S, ,

Optimal Rental

* The recursion leads to a nice dynamic programming

problem

Cli, k] = max(0, max (C[i,j]

Clj, &l

Ila; € S;;))

Optimal Rental

e But can we do better?

Optimal Rental

e Start out with the initial problem
e Select the activity that finishes first
* this would be a,

 This leaves most space for all other activities

e Call §; the set of activities compatible with a;
e These are those starting after a,

« Similarly, call S, the set of activities starting after a,

Optimal Rental

e Theorem: For any non-empty problem §, let a,, be the activity

with the smallest end time. Then a,, is contained in an optimal
solution

* Proof:
e Let A, be a solution
¢ i.e. the maximum sized compatible subset in
o Leta, € A, be the activity with earliest finish time

e Ifa, = a,then we are done

Optimal Rental

e Theorem: For any non-empty problem §, let a,, be the

activity with the smallest end time. Then a,, is contained
In an optimal solution

* Proof:
e Otherwise replace a; with a,, in A,
e Ay =A,—{a,} U {aq,}

e Since a,, is the first to finish, this is a set of
compatible activities

» Therefore, there exists an optimal solution with a,,

Optimal Rental

e Result of the Theorem:

* \We can find an optimal solution (but not necessarily
all optimal solutions) by always picking the first one
to finish.

Optimal Rental

Example

12345678 910

1 302 6 5 6151819

6 7 9121315181920 21

Select a4y
Exclude a,,ad;, and d, as incompatible

Choose ds5, dg, and d;y for the complete solution

Greedy Algorithms

 Greedy algorithms
* Determine the optimal substructure
 Develop a recursive solution
e Show that making the greedy choice is best

e Show that making the greedy choice leads to a similar
subproblem

* QObtain a recursive algorithm

e Convert the recursive algorithm to an iterative algorithm

