
Greedy Algorithms
Thomas Schwarz, SJ

The Change Making
Problem

• A given country uses a weird set of coins

• 1, 3, 5, 8

• How do you make change with the least number of coins?

• With these coins, it is not so obvious

• Normally, we can just start out with the largest coin that
fits, but not in this case

• Making change for 15:

• Use an 8, a 5 and two 1s

• But three 5s is better

The Change Making
Problem

• To solve the change making problem, we can use
dynamic programming

• Some notation: value of coin

• Best number of coins for change of is

• Best number of coins for change of plus one

• Best number of coins for change of plus one

• …

• Best number of coins for change of plus one

vi i, i ∈ {1,...,n}

x

x − v1

x − v2

x − vn

The Change Making
Problem

• To organize the calculation

• Create a tableau

• For row , column :

• How many coins to make change for an amount of
 with coins

i j

i 1,…, j

The Change Making
Problem

• Example: Coins with values
1, 3, 5, 8 to make change of
15

Value ones threes five eights
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

The Change Making
Problem

• Example: Coins with values
1, 3, 5, 8 to make change of
15

• First column is easy

Value ones threes five eights
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10
11 11
12 12
13 13
14 14
15 15

The Change Making
Problem

• Second column asks how many
threes I should use

• Example for value 10:

• Can use none

• Cost is 10

• Can use one three

• Cost is 1+7

• Can use two threes

• Cost is 2+4

• Can use three threes

• Cost is 3+1

Value ones threes five eights
0 0 0 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 ???
11 11
12 12
13 13
14 14
15 15

The Change Making
Problem

• Second column asks how
many threes I should use

• Formula is

 costs of making change

of with coins up to

 costs of using coins of
value

min{Ti−vjν,j−1 + ν |ν = 0,1,…, ⌊
i
vi

⌋}

Ti−vjv,j−1

i − νvj j − 1

+ν ν
vj

Value ones threes five eights
0 0 0 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 ???
11 11
12 12
13 13
14 14
15 15

The Change Making
Problem

• Our alternatives are:

• No threes: 10

• One three: 7+1=8

• Two threes 4+2=6

• Three threes 1+3=4

Value ones threes five eights
0 0 0 0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 10 4
11 11
12 12
13 13
14 14
15 15

The Change Making
Problem

• Filling in the other values
 Value ones threes five eights
0 0 0 0 0
1 1 1
2 2 2
3 3 1
4 4 2
5 5 3
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• The first values are simple
since we cannot use a five

Value ones threes five eights
0 0 0 0 0
1 1 1
2 2 2
3 3 1
4 4 2
5 5 3
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• The first values are simple
since we cannot use a five

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 5:

• Can use a five

• Can not use a five:

• 3 coins according to
previous column

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 6:

• Can use 5

• Costs: 1+1

• Cannot use 5

• Costs 2

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3
8 8 4
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 8:

• Can use 5

• Costs: 1+1

• Cannot use 5

• Costs 4

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 9:

• Can use 5

• Costs: 2+1

• Cannot use 5

• Costs 3

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 10:

• Can use two 5s

• Can use one 5

• Costs: 3+1

• Can use no 5s

• Costs 3

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 11:

• Can use two 5s

• Costs 2+1

• Can use one 5

• Costs: 2+1

• Can use no 5s

• Costs 5

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 12:

• Can use two 5s

• Costs 2+2

• Can use one 5

• Costs: 3+1

• Can use no 5s

• Costs 4

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 13:

• Can use two 5s

• Costs 2+1

• Can use one 5

• Costs: 4+1

• Can use no 5s

• Costs 5

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6
15 15 5

The Change Making
Problem

• Now on to five

• At value 14:

• Can use two 5s

• Costs 2+2

• Can use one 5

• Costs: 3+1

• Can use no 5s

• Costs 6

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6 4
15 15 5

The Change Making
Problem

• Now on to five

• At value 15:

• Can use three 5s

• Costs 3

• Can use two 5s

• Costs 2+3

• Can use one 5

• Costs: 4+1

• Can use no 5s

• Costs 5

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6 3
15 15 5 3

The Change Making
Problem

• Now on to eights

• At value 15:

• Can use one eight

• Costs 1+3

• Can use no eights

• Costs: 3

Value ones threes five eights
0 0 0 0 0
1 1 1 1
2 2 2 2
3 3 1 1
4 4 2 2
5 5 3 1
6 6 2 2
7 7 3 3
8 8 4 2
9 9 3 3
10 10 4 2
11 11 5 3
12 12 4 4
13 13 5 3
14 14 6 3
15 15 5 3 3

The Change Making
Problem

• Alternative: Memoization and Recursion

• Instead of using a tableau

• (or rather two, one to remember the best choice)

• Can use recursion and memoization

• Simplest form:

• What was the last coin that was added

• It has to be one of the coins: e.g. 1, 3, 5, or 8

• The costs are the cost of making change for the
amount minus the value of the coin plus one for the
coin itself

The Change Making
Problem

• Alternative: Memoization and Recursion

• Recursion

• where the minimum is taken over all different coin
values

• We also write the coin which causes the minimum
to be selected

c(n) = min{c(n − vi) + 1}

The Change Making
Problem

• For memoization in Python:

• have a global dictionary for the costs and the best
choice of coin (last_coin)

• Also, add the values of the coins in a list

last_coin = {0:0}
costs = {0:0}
values = [1,3,5,7,8]

The Change Making
Problem

• Here is very simple Python code
def getChange(n):
 if n in costs:
 return costs[n]

 best = 100000
 bestcoin = 0
 for x in range(len(values)):
 if values[x] > n:
 break
 alternativeCost = getChange(n-values[x])+1
 if alternativeCost < best:
 best = alternativeCost
 bestcoin = values[x]
 costs[n] = best
 last_coin[n] = bestcoin
 return best

The Change Making
Problem

• And here is the output

• Amount to make change for

• Number of coins needed

• Last coin used

• Example:

• For 20, use a 5, left 15

• For 15, use a 7, left 8

• For 8, use 8

0 0 0
1 1 1
2 2 1
3 1 3
4 2 1
5 1 5
6 2 1
7 1 7
8 1 8
9 2 1
10 2 3
11 2 3
12 2 5
13 2 5
14 2 7
15 2 7
16 2 8
17 3 1
18 3 3
19 3 3
20 3 5

The Change Making
Problem

• But we do not have this problem with normal coin sets

• US$-cents: 1, 5, 10, 25, 100

• Euro-cents: 1, 5, 10, 20, 50, 100, 200

The Change Making
Problem

• Cashier's Algorithm

• Always select the largest coin smaller or equal the current
amount

• Will not always work

• Another example: US Postage Stamps before forever

• 1, 5, 25, 32, 100

• Make change for 121

• Cashier's algorithm: 100+5+5+5+5+1

• Better choice 32+32+32+25

The Change Making
Problem

• But sometimes the Cashier's Algorithm is the best

• Assume that we have coins of 1, 5, 10, 20, and 50

• Proof by induction that the cashier's algorithm always give
the best change

• Represent the change as an array

• Coefficient of array: number of -th coins

• Example:

• one way of making change for 213

i i

3 2 4 8
1 5 10 20

0
50

The Change Making
Problem

• Proof:

• Assume is the result
of the cashier's algorithm for an amount of

• Assume is an
alternative with less coins for the same amount

but

C = [c1, c5, c10, c20, c50]

c1 + c5 ⋅ 5 + c10 ⋅ 10 + c20 ⋅ 20 + c50 ⋅ 50

A = [a1, a5, a10, a20, a50]

a1 + a5 ⋅ 5 + a10 ⋅ 10 + a20 ⋅ 20 + a50 ⋅ 50

a1 + a5 + a10 + a20 + a50 < c1 + c5 + c10 + c20 + c50

The Change Making
Problem

• Proof:

• Want to show that .A = C

The Change Making
Problem

• Proof:

• Lemma 1: An optimal solutions has not more than
four pennies

• Otherwise replace with a 5 cent piece

• Lemma 2: An optimal solution has not more than
one 10 cent piece

• Otherwise replace with a 20 cent piece

• Lemma 3: An optimal solution cannot have two
twenty cent pieces and one 10 cent piece

• Otherwise replace with a 50 cent piece

The Change Making
Problem

• Proof:

• Lemma 5: Maximum number of pennies in an
optimal solution is four

• Follows from Lemma 1

• Lemma 6: If the optimal solution has only
pennies and five cents, then the amount is at
most nine

• Follows from Lemma 2 and Lemma 5

The Change Making
Problem

• Lemma 7: The maximum amount for an optimal
solution with only pennies, 5 cent and 10 cent
pieces is 19

• Lemma 8: The maximum amount for an optimal
solution with only 1 cent, 5 cent, 10 cent, and 20
cent pieces is 49

The Change Making
Problem

• Proof:

• Assume that the number of 50 cent coins in A and
C differ.

• Because of how C is defined, the number of 50
cent coins in A has to be lower .

• However, the difference needs to be made up with
coins of smaller value

• But an optimal solution cannot have more than 49
cents in smaller coins

• Contradiction

a50 < c50

The Change Making
Problem

• Proof:

• So, the number of 50 cent coins does not differ

• If there are 50 cent coins, then look at the
best solution for amount- coins.

• and with the 50 cent coins removed are
still two different solutions for the same amount

• Now apply the same argument to the 20 cent
coins.

• Et cetera

x
x

C A

The Change Making
Problem

• We call the cashier's algorithm a greedy algorithm:

• We solve the problem by going to a smaller problem

• E.g. Making change for 134 cents.

• Lay out 50 cents

• Making change for 84 cents.

• …

• At each step, we select something optimal

Greedy Algorithms
• Many algorithms run from stage to stage

• At each stage, they make a decision based on the
information available

• A Greedy algorithm makes decisions

• At each stage, using locally available information, the
greedy algorithm makes an optimal choice

• Sometimes, greedy algorithms give an overall optimal solution

• Sometimes, greedy algorithms will not result in an optimal
solution but often in one good enough

Divisible Items Knapsack
Problem

• Given a set of items

• Each item has a weight

• Each item has a value

• Select a subset

• Constraint:

• Objective Function:

S

M ⊂ S

∑
x∈M

w(x) < W

w(x)
v(x)

∑
x∈M

v(x) ⟶ max

Divisible Items Knapsack
Problem

• Order all items by impact

•

• In order of impact (highest first), ask whether you want to
include the item

• And you include it if the sum of the weights of the items
already selected is smaller than

impact(x) =
v(x)
w(x)

W

Optimal Rental
• Set of activities

• Each activity has a start time and a finish time

•

• Each activity needs to use your facility

• Only one activity at a time

• Make the rental agreements that maximize the number
of rentals

S = {a1, a2, …, an}

0 ≤ si < fi < ∞

Optimal Rental
• Two activities and are compatible iff

•

• This means that activity finishes before activity

ai aj

[si, fi) ∩ [sj, fj) = ∅

i < j j

Optimal Rental
• Example:

• A compatible set is

• Another compatible set is

{A1, A5, A8, A10}

{A3, A9}

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

f 6 7 9 12 13 15 18 19 20 21

Optimal Rental
• Optimal rental with a dynamic programming algorithm

• Subproblems: Define to be the set of activities that
start after finishes and finish before startsai

Sik
ak

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

f 6 7 9 12 13 15 18 19 20 21

S1,8 = {a5}

Optimal Rental
• We want to find an optimal rental plan for

• Assume that there is an optimal solution that contains
activity

• By selecting , we need to decide what to do with the
time before starts and after finishes

• These sets are and

Sik

aj ∈ Si,k

aj
aj aj

Sij Sjk

Optimal Rental
• Assume that is part of an optimal solution for

• Then is divided into the ones that end before and
the ones that start after

•

Ai,kaj Si,k

Ai,k aj
aj

Ai,j = Ai,k ∩ Si,k Aj,k = Ai,k ∩ Sj,k

Ai,k = Ai,j ∪ {aj} ∪ Aj,k

Optimal Rental

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk

Optimal Rental
• Clearly, is an optimal solution for

• is an optimal solution for

• For if not, we could construct a better solution for

ai ak

Si,k

aj

Si,j Sj,k

Aij Ajk

Sij Sjk

Ai,j Si,j

Aj,k Sj,k

Si,k

Optimal Rental
• We can therefore solve recursively the problem for by

looking at all possible activities for

• Define Max number of compatible activities
in

• Then:

• The 0 is necessary because there might be no
activity in

Si,k
aj

C[i, k] =
Si,k

C[i, k] = max(0, max (C[i, j] + C[j, k] + 1 |aj ∈ Si,k))

Si,k

Optimal Rental
• The recursion leads to a nice dynamic programming

problem

C[i, k] = max(0, max (C[i, j] + C[j, k] + 1 |aj ∈ Si,k))

Optimal Rental
• But can we do better?

Optimal Rental
• Start out with the initial problem

• Select the activity that finishes first

• this would be

• This leaves most space for all other activities

• Call the set of activities compatible with

• These are those starting after

• Similarly, call the set of activities starting after

S1 a1

a1

Sk ak

a1

Optimal Rental
• Theorem: For any non-empty problem let be the activity

with the smallest end time. Then is contained in an optimal
solution

• Proof:

• Let be a solution

• i.e. the maximum sized compatible subset in

• Let be the activity with earliest finish time

• If then we are done

Sk am
am

Ak

Sk

a1 ∈ Ak

am = a1

Optimal Rental
• Theorem: For any non-empty problem let be the

activity with the smallest end time. Then is contained
in an optimal solution

• Proof:

• Otherwise replace with in

•

• Since is the first to finish, this is a set of
compatible activities

• Therefore, there exists an optimal solution with

Sk am
am

a1 am Ak

A′￼k = Ak − {a1} ∪ {am}

am

am

Optimal Rental
• Result of the Theorem:

• We can find an optimal solution (but not necessarily
all optimal solutions) by always picking the first one
to finish.

Optimal Rental
• Example

• Select

• Exclude , , and as incompatible

• Choose , , and for the complete solution

i 1 2 3 4 5 6 7 8 9 10

si 1 3 0 2 6 5 6 15 18 19

f 6 7 9 12 13 15 18 19 20 21

a1

a2 a3 a4

a5 a8 a10

Greedy Algorithms
• Greedy algorithms

• Determine the optimal substructure

• Develop a recursive solution

• Show that making the greedy choice is best

• Show that making the greedy choice leads to a similar
subproblem

• Obtain a recursive algorithm

• Convert the recursive algorithm to an iterative algorithm

