Graph Algorithms

Thomas Schwarz, SJ

Searching in Graphs

 Exploring a maze
* You are in the middle of a maze
e How do you get out
* Ariadne's solution:

e Use a thread of glittering
jewels in order to avoid
using the same edges
several times

e Follow a wall

e Works for simple mazes

Tremaux's Algorithm

e Tremaux's Algorithm aka Hansel
and Gretel's aka Ariadne's o

e Carry bread and leave bread
crumbs on each path you follow

* |f you come to an intersection, J
follow one where there are no
bread crumbs, if you can — | \ —

e |f you come to an intersection
and everything has already been « |f not, follow a path that has
marked or you are at a dead- only one trail of crumbs.
end, turn around if you came at
a path that has only one thread
of crumbs

Tremaux's Algorithm

e Example

Tremaux's Algorithm

.....

Tremaux's Algorithm

.......

- - ® ®
e 8 QC aecal|] Ve e-

Trémaux’
aux's Algorithm

o =
-"’

e 8 =
-
--. 8
- ®
- ®

Tremaux's Algorithm

-
e 8 20 ot e e .

Tremaux's Algorithm

e https://en.wikipedia.org/wiki/
File:Tremaux_Maze_Solving_Algorithm.gif

Tremaux's Algorithm

e At the end:

o All paths will be double marked and you will end up at
the starting point

 This means that you walked by the entry

Searching in Graphs

* We can use this idea for defining the first graph exploration
algorithm.

 Goal is to visit all vertices
* \We use a timer:
e Startsoutat 0
* Incremented every time we do something
* All nodes get marked with a
* Discovery time: First time that we see the node

* Finishing time: When we are done with the node

Breadth First Search

e Color a vertex
e white: vertex has not yet been discovered

e gray: vertex has been discovered, but still needs to be
a base for exploration

e black: vertex has been dealt with

Breadth First Search

bfs (G, s) :

for v 1in G.vertices:
v.color = 'white'
v.dist = 1inf
v.pred = None

s.color = 'gray'

s.dist = 0

s.pred = None

queue = |[]

queue.append (s)
while queue:

u = queue.pop (0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dist = u.dist+l1
v.pred = u

queue.append (V)
u.color = 'black'

Breadth First Search

e Example: s=A

Breadth First Search

while queue:

* queue = {A} u = queue.pop (0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
QD v.dist = u.dist+l
v.pred = u

queue.append (V)
u.color = 'black'

Breadth First Search

e queue ={}

e U=A

while queue

u = queue.pop(0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)

u.color

= 'black'

Breadth First Search

while queue:

° queuezz{} u = queue.pop (0)
for v in u.adjacency:
e U=A if v.color == 'white'
v.color = 'gray'

v.dist = u.dist+l

v.pred = u

queue . append (v)
u.color = 'black'

e queue = {B,C,D}

Breadth First Search

while queue:

° queuezz{} u = queue.pop (0)

for v 1n u.adjacency:
e U=A if v.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)
= 'black'

u.color

e queue = {B,C,D}

Breadth First Search

while queue:

* queue = {C,D} u = queue.pop (0)

for v 1n u.adjacency:
e u=0B if v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)
= 'black'

u.color

e queue = {C,D}

Breadth First Search

while queue:

* queue = {C,D } u = queue.pop (0)
for v in u.adjacency:
e u=B if v.color == 'white'

v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

2 u.color

e queue = {C, D, E}

Breadth First Search

while queue:

* queue = {C,D,E} u = queue.pop (0)

for v 1n u.adjacency:
e u=B if v.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)
= 'black'

2 u.color

e queue = {C,D,E}

Breadth First Search

while queue:

* queue = {C,D,E} u = queue.pop (0)
for v 1n u.adjacency:
e u=0C if v.color == 'white'

v.color = 'gray'
v.dlist = u.dist+l

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue = {D,E}

Breadth First Search

while queue:

* queue = {D,E} u = queue.pop (0)
for v in u.adjacency:
e u=0C if v.color == 'white'

v.color = 'gray'
v.dist = u.dist+l

v.pred = u
queue . append (v)
gdcolor = 'black'

e queue ={D, E, F}

Breadth First Search

while queue:

* queue = {D,E,F} u = queue.pop (0)
for v 1n u.adjacency:
e u=0C if v.color == 'white'

v.color = 'gray'
v.dlist = u.dist+l

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue ={D, E, F}

Breadth First Search

while queue:

* queue = {D,E,F} u = queue.pop (0)
for v 1n u.adjacency:
e u=D if v.color == 'white'

v.color = 'gray'
v.dlist = u.dist+l

v.pred = u
queue.append (V)
gdcolor = 'black'

e queue = {E, F}

Breadth First Search

e queue = {E,F}
e u=D

e queue ={E, F G}

while queue

u = queue.pop (0)
for v in u.adjacency:
1f v.color == 'white'
v.color = 'gray'

2u.color

v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

Breadth First Search

while queue:

* queue = {E,F,G} u = queue.pop (0)
for v 1n u.adjacency:
e u=D if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
2u.color = 'black'

e queue ={E, F G}

Breadth First Search

while queue:

* queue = {EsF,G'} u = queue.pop (0)
for v 1n u.adjacency:
e u=E if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
2u.color = 'black'

e queue ={F, G}

Breadth First Search

while queue:

* queue = {F,G} u = queue.pop (0)
for v in u.adjacency:
e u=E if v.color == 'white'
v.color = 'gray'

1 v.dist = u.dist+l

v.pred = u
queue . append (v)
u.color = 'black'

2

e queue ={F G, H}

Breadth First Search

while queue:

* queue = {F,G,H} u = queue.pop (0)
for v 1n u.adjacency:
e u=E if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue ={F G, H}

Breadth First Search

while queue:

* queue = {G,H} u = queue.pop (0)
for v 1n u.adjacency:
e u=F if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue = {G, H}

Breadth First Search

while queue:

* queue = {GaH} u = queue.pop (0)
for v in u.adjacency:
e u=F if v.color == 'white'
v.color = 'gray'

v.dist = u.dist+l

v.pred = u
queue . append (v)
u.color = 'black'

2

e queue = {G, H}

Breadth First Search

e queue = {G,H}

e u=F

e queue = {G, H}

while queue

u = que
for v 1
if v

5 u.color

ue.pop (0)

n u.adjacency:
.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)

= 'black'

Breadth First Search

e queue = {G,H}

e u=G

e queue = {H}

while queue

u = queue.pop(0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)

2 u.color

= 'black'

Breadth First Search

e queue = {G,H}

e u=G

e queue = {H}

while queue

u = queue.pop (0)
for v in u.adjacency:
1f v.color == 'white'
v.color = 'gray'

2 u.color

v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

Breadth First Search

e queue = {H}
e u=G

e queue = {H}

while queue

u = que
for v 1
if v

5 u.color

ue.pop (0)

n u.adjacency:
.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)

= 'black'

Breadth First Search

e queue ={}

e u=H

e queue ={}

while queue

u = queue.pop(0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)

2 u.color

= 'black'

Breadth First Search

e queue ={}

e u=H

e queue ={}

while queue

u = queue.pop (0)
for v in u.adjacency:
1f v.color == 'white'
v.color = 'gray'

2 u.color

v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

Breadth First Search

e queue ={}

e u=H

e queue ={}

while queue

u = que
for v 1
if v

5 u.color

ue.pop (0)

n u.adjacency:
.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)

= 'black'

Breadth First Search

As you can see, BFS is just a version of Dijkstra's
algorithm

Distance calculates accurately the distance from the
starting point

The pred property allows us to generate a shortest path
from the initial node

We now prove these properties exactly

Breadth First Search

e Lemma: Let G = (E, V) be an undirected or directed
graph. Let s € V be an arbitrary vertex. Then for any

edge (u,v) € E

e 0(s,v) <o(s,u)+ 1 ©

o0

e Recall: 6(a, b) is the length of a shortest path from a to b

Breadth First Search

e Proof:

e Assume first that o(s, u) = o0, i.e. there is no path from
s to u

e Then o(s,v) < oo = o(s, u) + 1 regardless whether
there is a path from s to v.

Breadth First Search

e Proof:

e Next assume that o(s, 1) < 00, i.e. that there is a path
from s to u.

e Extend this path to a path from s to v.

e This path has length o(s, u) + 1.

_8(s.0)
e Then 6(s, v) = min(Lenght of a path from s to v)

/////

o -0 e < Length of this path
o =0(s,u)+1

Breadth First Search

e Lemma: Let Let G = (E, V) be an undirected or directed
graph. Let s € V be an arbitrary vertex. Run BFS on G
and s. Then for every vertex v € V, v.dist > o(s, v).

 This means that the calculated distance in BFS is at
least as large as the actual distance

Breadth First Search

* Proof by induction on the number of enqueue operations

* Notice that v.dist is assigned just when we are about to
engueue it

while queue:

u = queue.pop (0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
- - > v.dist = u.dist+l

v.pred = u
queue.append (V)
u.color = 'black'

Breadth First Search

e |nduction Start:
e When s Iis enqueued all distance properties are infinity
e with the exception of s which has dist 0O

At this point, for every vertex v € V, v . dist > o(s, v)

Breadth First Search

* |nduction step:

* The value of the distance
property only changes when
we make the assignment just
before enqueuing a white

vector

* |nduction hypothesis implies

u . dist > o(s, u)

e Therefore

while queue:
u = queue.pop (0)
for v in u.adjacency:

if v.color == 'white'
v.color = 'gray'
- - > v.dist = u.dist+1l

v.pred = u
queue.append (v)
u.color = 'black'

v.dist = u.dist+1 > o(s,u) + 1 > 6(s, v)

Breadth First Search

e Afterwards, the vertex v is no longer white and never
changes its distance value

Breadth First Search

* We now need to see more closely how the algorithm
works:

* We can think of the queue as the boundary between
black and white vertices that moves slowly away from s

e Lemma: If the queue has vertices (v, v,, ..., V,) with v,
being the head, then

e v, .dist < v,.dist+1
* and

o v;.dist<v, ,.distfori=12,....,n—1

Breadth First Search

* Proof by induction on the number of queue operations

e |nitially, the queue has only s in it, so the property
certainly holds

* The queue changes through enqueuing and dequeuing
operations

Breadth First Search

e If the head v, is dequeued, v, becomes the new head.

o (If there is no v, then the queue is empty, and the
assertion holds vacuously)

o Before dequeuing, v, . dist < v, . dist, therefore
v, .dist < v, .dist+1 < v, .dist+1

 Therefore, the first inequality is true

* The second assertion just looses the first inequality

Breadth First Search

e Ifanewelementv, ;isenqueued, we just dequeued a
vertex 1 and are adding all white vertices adjacent to u

while queue:
u = queue.pop (0)
for v 1in u.adjacency:

if v.color == 'white'
v.color = 'gray'
- - > v.dist = u.dist+1l

v.pred = u
queue.append (v)
u.color = 'black'

e Therefore, v, .dist = u.dist+1.

e By induction hypothesis, u . dist < v, . dist because u and v,
were just in the same queue

Breadth First Search

 Therefore
e v .dist=u.dist+1 < v .dist+1

* Proving the first assertion

Breadth First Search

* From the induction hypothesis, we also have
e v .dist < u.dist+1

e which implies that
e v, .dist <u.dist+1 <vy ., .dist

* This is the only new part of the second assertion

Depth First Search

e Breadth first search
uUses a queue

* |n Python, a
queue is a list to
which you
append and from
which you pop

e C++ and Java
have libraries that
implement
queues

def bfs (G, s):

for u in G.Vertices:
u.color = “white”
u.d = 1infty
u.pred = Null

s.color=%“gray”

s.d = 0
s.pred = Null
queue = Queue.queue ()

queue.enqueue (s)
while queue:

u = queue.head()
for v in u.adjacency list:
1f v.color=="white”
v.color = “gray”
v.d = u.d + 1
v.pred = u

queue.engqueue (V)
u.color=“black”

Depth First Search

* Depth first search replaces the queue with a stack

* This changes the behavior of the algorithm
considerably

 Remarkably, the resulting Depth First Search is the
more important and interesting algorithm

Depth First Search

 Depth first search
e \ersion 1

e Change queue
into stack

e (Getrid of the
distance

def dfs (G, s):

for u in G.Vertices:
u.color = “white”
u.d = 1infty
u.pred = Null
s.color=%“gray”
s.pred = Null
queue = Stack.stack()
stack.push (s)
while stack:
u = stack.pop ()
for v 1n u.adjacency list:
1f v.color=="“white”
v.color = “gray”
v.pred = u
stack.push (v)
u.color="black”

Depth First Search

 We add visiting times to our nodes:
e Discovered time

* When a node turns gray

* Finished time
* When a node turns black
» Because
e some derived algorithms use it
e in order to argue about DFS

* Whenever we change a node color, we increment a clock

Depth First Search

 Unlike BFS, a typical DFS will want to classify all nodes

e Have a DFS_Visit(start_node) that starts in a node and
visit what can be available

e Have a DFS() function that uses the visit function
repeatedly if necessary

Depth First Search

dfs visit (u):
global clock
clock += 1
u.d = clock

u.color = 'gray'
for each v 1n u.adjacency:
1f v.color == 'white'
v.pred = u
dfs visit (v)
u.color = 'black'

clock += 1
u.f = clock

Depth First Search

dfs (G) :
for vertex 1n G.V:
vertex.color = 'white'
vertex.pred = None
global clock = 0
for vertex 1n G.V:
1f vertex.color == 'white':
dfs visit (vertex)

Depth First Search

 Understanding the algorithm
e The stack is hidden in the recursive call

e \We can unroll it

 But need to be careful as something on the stack can
be already found and processed via another route

Depth First Search

dfs visit (u):
stack = [u]
while stack:
u = stack.pop ()
1f u.color=="'white'
for v 1n u.adjacency:
1f v.color=="'white':
stack.push (v)

Depth First Search

Start with C

OS stack 1s
dfs visit (C)

dfs visit (u):
:=E:>' u.color = 'gray'
for each v in u.adjacency:
if v.color == 'white'

dfs visit (v)
u.color = 'black

Depth First Search

Start with C

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v 1n u.adjacency:
::E:>» if v.color == 'white'
dfs visit (v)
u.color = 'black

We set the clock to 1
We pick arbitrarily E
from the adjacency list

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v 1n u.adjacency:
1f v.color == 'white'

::E:>. dfs visit (v)
u.color = 'black

We call dfs visit (E)

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

-

dfs visit(u):

:=E:>» u.color = 'gray'
for each v in u.adjacency:

if v.color == 'white'
dfs_visit(v)
u.color = 'black

u = E, set E's discovery
time and set the
predecessor link

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

-

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:

1f v.color == 'white'
E:E:>> dfs visit (v)

u.color = 'black

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

-

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:

1f v.color == 'white'
E:E:>> dfs visit (v)

u.color = 'black

we pick v = H and call
dfs visit (H)

Depth First Search

OS stack

dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):

=>

u.color = 'gray'

for each v in u.adjacency:

if v.color == 'white'
dfs_visit(v)
u.color = 'black

we pick v = H and call
dfs visit (H)
this colors H gray

Depth First Search

OS stack
dfs visit(
dfs visit (
dfs visit (
dfs visit (

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

we pick v = I and call
dfs visit (I)
this colors I gray

Depth First Search

OS stack
dfs visit (L)
dfs visit (I)
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

we pick v = L and call
dfs visit (L)
this colors L gray

Depth First Search
(A —>(8)

OS stack
dfs visit (L)
dfs visit (I)
dfs visit (H)
(E)
(C)

dfs visit
dfs visit

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

L has no vertices 1in
the adjacency list
Therefore, we finally
go to the last line

Depth First Search
(A —>(8)

OS stack
dfs visit
dfs visit
dfs visit
dfs visit

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We finish dfs visit (L)
and are back at the
execution of dfs visit(I)

Depth First Search
(A —>(8)

OS stack
dfs visit (J)
dfs visit (I)
dfs visit (H)
(E)
(C)

dfs visit
dfs visit

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black
We pick a white vertex

reachable from I: J

Depth First Search

OS stack
dfs visit (J)
dfs visit (I)
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

There are no white nodes
in the adjacency list of J

Depth First Search

OS stack
dfs visit
dfs visit
dfs visit
dfs visit

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We close the call on J and
are back to dfs wvisit (I)

Depth First Search

OS stack
dfs visit (K)
dfs visit (I)
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (I) now goes to K

Depth First Search

OS stack
dfs visit(
dfs visit (
dfs visit (
dfs visit (

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (K) finishes

Depth First Search

OS stack
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (I) runs agailn
but finds no white vertices,
so 1t finishes

Depth First Search
(A —>(8)

OS stack
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (I) runs agailn
but finds no white vertices,
so 1t finishes

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (H) runs agailn
but finds no white vertices,
so 1t finishes

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (E) runs agailn

Depth First Search

OS stack
dfs visit (F)
dfs visit (E)
dfs visit (C)

dfs visit(u):

u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'

dfs_visit(v)
u.color = 'black

Depth First Search

OS stack
dfs visit (G)
dfs visit (F)
dfs visit (E)
dfs visit (C)

dfs visit(u):

u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'

dfs_visit(v)
u.color = 'black

Depth First Search

OS stack
dfs visit (F)
dfs visit (E)
dfs visit (C)

dfs visit(u):

u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'

dfs_visit(v)
u.color = 'black

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

Nothing left 1n F

Depth First Search

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

Finishing E

Depth First Search
(A —>(8)

OS stack
dfs visit (D)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)

u.color = 'black Last white vector 1in
the adjacency list of
C 1s D

Depth First Search
(A —>(8)

OS stack
dfs visit (D)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

D has no white vertices
in 1ts adjacency 1list

Depth First Search
(A —>(8)

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We are back 1n C

Depth First Search
(A —>(8)

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

Now we close C

Depth First Search

OS stack

dfs visit(u):

u.color = 'gray' 9,10
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = '"black 5,6

Now we close C

Depth First Search

e At this point, the original call to dfs_visit(C) is done

e However, since there are still white nodes left, we have to
pick one of them and visit again.

e We pick A

Depth First Search

1

OS stack
dfs visit (A)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

A 1s the only node 1n
the stack

OS stack
dfs visit (B)
dfs visit (A)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We discover B from A

Depth First Search

<l g 0023

OS stack
dfs visit (A)

dfs visit (u) : 9,10
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v) 5,6
u.color = 'black

We can finish B

Depth First Search

0S stack 21,24
dfs visit (A)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We can finish A

Depth First Search

e Now we are done

* The predecessor relationship has given us a nice set of
trees — a "forest”

Depth First Search

* Runtime of algorithm
* We look at all the elements of the adjacency lists
e For each, we do constant work

e But we also need to do some Initial work for all vertices

e Runtimeis @(max(|V|,|E]|)

Depth First Search

* Properties:
e Parenthesis Theorem

e |f for two nodes

e If[lu.d,u.fln[v.d,v.f] = @ then neither u
and v are descendants in the predecessor forest

o If[u.d,u.f]Clv.d,v.f]thenuisa
descendant of v

e If[u.d,u.f]D[v.d,v.f]thenvisa
descendant of u

Depth First Search

* White Path Theorem
e Vis adescendant of u exactly if

e At the time of discovery of u there is a path from u to v
consisting entirely of white vertices

Depth First Search

e (Classification of edges:

* Tree edges are edges in the depth first tree

Depth First Search

e Back edges are edges go from a descendant to an
ancestor

e Simple example: 1,6 2,5
e Startin A, discover B, discover C

e Edge from C to A is a back edge 13’4

Depth First Search

* Forward edges

 Edges connecting an ancestor to a descendant, but
that are not in the tree

Depth First Search

e Cross Edges: anything else

 Can be in the same tree or connecting different trees

Depth First Search

e |f we look at an edge (u,v) during depth first search for the
first time

* (In an undirected graph, we look at each edge twice)
 |fvis white: tree edge
e |fvis gray: back edge

e |f vis black: forward or cross edge

Depth First Search

* |n a depth first search on an undirected graph, every edge is
either a tree edge or a back edge

Let (1, V) be an edge and assume that u is discovered first:
u.d<v.d

The algorithm discovers and finishes v before i, so

u.f>v.f

If DFS uses the edge (i, v) from u, then v is white, and
(u,v) becomes a tree edge

If DFS uses the edge (u, v) from v, then u is gray at this
moment and this becomes a back edge.

