
Applications of Depth
First Search

Thomas Schwarz, SJ

Topological Sort
• Recall topological sort

• We are given a directed graph

• Want to order all vertices such that no edge goes from
a higher-numbered vertex to a lower-numbered vertex

• If this is impossible, then we have a cycle

• So, our algorithm also detects whether there is a cycle
in a directed graph

• We use DFS for an even better algorithm

Topological Sort
• Run DFS on all nodes

• Order nodes according to finish time in descending
order

Topological Sort
• Start in A

• Order
adjacency
lists
alphabetically

A

B
C

D

E

F

G

H

I

A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

Topological Sort
• Visit B

A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

visit(B)
visit(A)

A

B
C

D

E

F

G

H

I1

2

Topological Sort
• Visit H

A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

visit(H)
visit(B)
visit(A)

A

B
C

D

E

F

G

H

I1

2

3

Topological Sort
• Visit E

A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

visit(E)
visit(H)
visit(B)
visit(A)

A

B
C

D

E

F

G

H

I1

2

3
4

Topological Sort
• Visit F

A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

visit(F)
visit(E)
visit(H)
visit(B)
visit(A)

A

B
C

D

E

F

G

H

I1

2

3
4

5

Topological Sort
• Visit I

A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

visit(I)
visit(F)
visit(E)
visit(H)
visit(B)
visit(A)

A

B
C

D

E

F

G

H

I1

2

3
4

5

6

Topological Sort
• Visit D

A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

visit(D)
visit(I)
visit(F)
visit(E)
visit(H)
visit(B)
visit(A)

A

B
C

D

E

F

G

H

I1

2

3
4

5

6

7

Topological Sort
• At this point:

• The adjacency list of D starts with A

• A is gray

• This edge becomes a back edge!

• And shows that there is a cycle
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D

visit(D)
visit(I)
visit(F)
visit(E)
visit(H)
visit(B)
visit(A)

A

B
C

D

E

F

G

H

I1

2

3
4

5

6

7

Topological Sort
• A different example

• Start in A

A

G CD

E

FB HA: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• A different example

• Start in A

A

G CD

E

FB H

1

visit(A)

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Visit B

visit(B)
visit(A)

A

G CD

E

FB H

1

2A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Visit H

visit(H)
visit(B)
visit(A)

A

G CD

E

FB H

1

2 3A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Visit F

visit(F)
visit(H)
visit(B)
visit(A)

A

G CD

E

FB H

1

2 3 4A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Finish F

• Push F at front: [F]

visit(F)
visit(H)
visit(B)
visit(A)

A

G CD

E

FB H

1

2 3 4,5A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Finish H

• Push H at front: [H, F]

visit(H)
visit(B)
visit(A)

A

G CD

E

FB H

1

2 3,6 4,5A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Finish B

• Push B at front: [B,H, F]

visit(B)
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Go back to visit A

• [B,H, F]

visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Visit D

• [B,H, F]

visit(D)
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Visit C

• [B,H, F]

visit(C)
visit(D)
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8 9

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Finish C

• [C, B,H, F]

visit(C)
visit(D)
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8 9,10

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Go back and finish D

• [D, C, B, H, F]

visit(D)
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• We are back to visit A

• Next node is G

• [D, C, B, H, F]

visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Visit G

• [D, C, B, H, F]

visit(G)
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10
12

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Finish G

• [G, D, C, B, H, F]

visit(G)
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Go back to A

• [G, D, C, B, H, F]

visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Finish A

• [A, G, D, C, B, H, F]

∅

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Done with visit(A)

• [A, G, D, C, B, H, F]

∅

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• One white node left: E

• Visit E

• [A, G, D, C, B, H, F]

visit(E)

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

15

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Finish E

• [E, A, G, D, C, B, H, F]

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

15,16

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

Topological Sort
• Key observation from the examples:

• We have a cycle if we ever try to visit a gray node

Topological Sort
• Lemma: A directed graph is acyclic if and

only if a DFS of G yields no back edges
G = (V, E)

Topological Sort
• Proof: " "

• If DFS produces a back-edge then is an
ancestor of

• There is a path from to in the tree

• The edge closes a cycle

• from to back to

⇒

(v, u) u
v

u v

(v, u)

u v u u

v

visiting v and discovering a gray node

Topological Sort
• Proof: " "

• Suppose has a cycle

• Let be the first vertex in the cycle to be discovered

⇐

G

u

u

v

cycle

Topological Sort
• All other vertices in the cycle are white and there is a

white-path to the node just in front of v u

u

v

cycle

Topological Sort
• By the white-path theorem:

• We will discover from

• (Though not necessarily through the cycle since
there might be more cycles)

• Thus, is a back edge

v u

(v, u)

u

v

visiting v and discovering a gray node

Topological Sort
• Theorem: DFS gives a topological sort or discovers a

cycle

• Proof:

• Need to show:

• If DFS does not discover a cycle, then for each edge
, we have (u, v) u . f > v . f

Topological Sort
• Proof:

• At the time that we are first looking at :

• cannot be gray, because then we would have a
back-edge

(u, v)

v

Topological Sort
• At the time that we are first looking at :

• If is white:

• Then by the white path theorem, becomes an
ancestor of

• By the parenthesis theorem

(u, v)

v

u
v

v . f < u . f

Topological Sort
• Proof:

• At the time that we are first looking at :

• If is black, then is still be visited, so

• is not yet black

• so,

• qed

(u, v)

v u

u

u . f > v . f

Strongly Connected
Components

• WWW graph:

• Nodes: pages

• Edges: links from one page to another page

• Broder et al. study (2000): 200 million pages and 1.5 billion links

In outgiant strongly
connected component

Islands

tendrilstendrils

tubes

Strongly Connected
Components

• Bowtie:

• Strongly connected component at the center of the WWW
(28%) of all nodes

In outgiant strongly
connected component

Islands

tendrilstendrils

tubes

Strongly Connected
Components

• Islands: Isolated areas of the web

In outgiant strongly
connected component

Islands

tendrilstendrils

tubes

Strongly Connected
Components

• In: Possible to reach the giant

• Out: Reachable from the giant

In outgiant strongly
connected component

Islands

tendrilstendrils

tubes

Strongly Connected
Components

• Weird stuff: Tubes that move from In to Out bypassing
the giant

In outgiant strongly
connected component

Islands

tendrilstendrils

tubes

Strongly Connected
Components

• Weird stuff: Tendrils to In and tendrils to Out

In outgiant strongly
connected component

Islands

tendrilstendrils

tubes

Strongly Connected
Components

• Strongly connected component:

• Can reach any vertex from any other vertex

A

B

C

D

E

F

Strongly Connected
Components

• Strongly connected component

• This is NOT strongly connected

• There is no way to get from D to A

A

B

C

D

F

Strongly Connected
Components

• Lemma: Let and be two strongly connected
subgraphs of a graph and assume that there is a path
from a vertex in to a vertex in and also a path from
a vertex of to , then is strongly connected

G1 G2
G

G1 G2
G2 G1 G1 ∪ G2

G1 G2

u v

u’ v’

Strongly Connected
Components

• Proof: Take two nodes and in .

• If both are in then there is a path between and
because they are in

a b G1 ∪ G2

G1 a b
G1

G1 G2

u v

u’ v’

a

b

Strongly Connected
Components

• Proof: Take two nodes and in .

• If both are in then there is a path between and
because they are in

a b G1 ∪ G2

G2 a b
G2

G1 G2

u v

u’ v’

a

b

Strongly Connected
Components

• If and , then we can move from
to and from to and then from to .

• After removing cycles, this is now a path from to

a ∈ V(G1) b ∈ V(G2) a
u u v v b

a b

G1 G2

u v

u’ v’

a
b

Strongly Connected
Components

• Similarly, if and , then we can move
from to and from to and then from to .

• After removing cycles, this is now a path from to

a ∈ V(G2) b ∈ V(G1)
a v′ v′ u′ u′ b

a b

G1 G2

u v

u’ v’

a

b

Strongly Connected
Components

• A single node is a strongly connected subgraph

• For each strongly connected subgraph, we can try to
grow by adding other nodes

a

strongly connected

x

y

• If a node a has a path to
and from a strongly
connected subgraph, then
by the lemma, we can add
the node and get a bigger
strongly connected
subgraph

Strongly Connected
Components

• Strongly connected component : A maximal strongly
connected subgraph

• The nodes of any directed graph can be divided into
strongly connected components

Strongly Connected
Components

• Example:

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

Strongly Connected
Components

• Try it out by growing from individual nodes

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

Strongly Connected
Components

• Result:

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

Strongly Connected
Components

• If we only look at the connected components we get the
SCC metagraph

• Nodes are the strongly connected components

• Edges represent the existence of an edge from one
component to the next

Strongly Connected
Components

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c d,e,f,g

h

i,j,k,l,m,n

o,p,q

Strongly Connected
Components

• The resulting metagraph has to be acyclic

• If there is a cycle in the metagraph, then by the lemma,
the metanodes can be merged into bigger strongly
connected subgraphs

Strongly Connected
Components

• Example: Add two edges

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c d,e,f,g

h

i,j,k,l,m,n

o,p,q

Strongly Connected
Components

• Now we can start merging via the Lemma

• There is a path from components S to R and vice versa

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c d,e,f,g

h

i,j,k,l,m,n

o,p,q

X

Y

Z

R

S

Strongly Connected
Components

• So we merge

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h d,e,f,g

i,j,k,l,m,n

o,p,q

X

Y

Z

RS

Strongly Connected
Components

• There is a path from RS to X and vice versa:

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h d,e,f,g

i,j,k,l,m,n

o,p,q

X

Y

Z

RS

Strongly Connected
Components

• We can merge

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h,
d, e, f, g

i,j,k,l,m,n

o,p,q

X

Y

Z

RSX

Strongly Connected
Components

• Finally, we can merge Z with the new supernode

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h,
d, e, f, g,
i, j, k, l,

m, n

o,p,q

X

Y

Z

RSXZ

Strongly Connected
Components

• This can be generalized:

• Theorem: The metagraph is acyclic

Strongly Connected
Components

• How can we apply DFS to the problem of determining
connected components?

• The WWW graph in 2000 would have been to big for
anything but linear time algorithms

Strongly Connected
Components

• Answer:

• Use DFS several times

• Including indirectly on the metagraph

Strongly Connected
Components

Strongly Connected
Components

