Applications of Depth
First Search

Thomas Schwarz, SJ

Topological Sort

* Recall topological sort
 We are given a directed graph

e Want to order all vertices such that no edge goes from
a higher-numbered vertex to a lower-numbered vertex

e |f this is impossible, then we have a cycle

* S0, our algorithm also detects whether there is a cycle
in a directed graph

 \We use DFS for an even better algorithm

Topological Sort

e Run DFS on all nodes

 Order nodes according to finish time in descending
order

Topological Sort

e Startin A

e Order
adjacency
lists
alphabetically

Gy ™ @]
0

H T Q"R M&HOOQT P
O QH TP D W

Topological Sort

* Visit B

aw
@) oy O
M- & 0 H O -

MO AEdRKBMUODTDH

Topological Sort

e Visit H
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: 1
G: C visit (H)
H: visit (B)
I: D

visit (A)

Topological Sort

e VisitE

A: B,C

B: H

C: E,F,H

D: A,G

E: F

F: I

G: C visit (E)

H- visit (H)

I: D visit (B)
visit (A)

Topological Sort

e Visit F

A: B,C

B: H

C: E,F,H

D: A,G

E: F

Fool visit (F)

G: C visit (E)

H: visit (H)

I: D visit (B)
visit (A)

Topological Sort

e Visit |

A: B,C

B: H

C: E,F,H

D: A,G

E: F

F: T visit (I)

G: C visit (F)

H: visit (E)

I: D visit (H)
visit (B)
visit (A)

Topological Sort

e Visit D

H T Q=9 &HOQ oW
QO HMmPHNTD W
() @)

Topological Sort

e At this point:

e The adjacency list of D starts with A (A1
e Alis gray

@ s
* This edge becomes a back edgel ‘\’/ .
D2

* And shows that there is a cycle

@]

Fr
a
<
.|_|.
0
I_l
(_'_

H T Q=" MHMOQT >
QH M= P mHdmD W

)

<

-

0))]

-

+

)

<

- . - - .
0))

-

(_'_

Topological Sort

e A different example

e Startin A

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e A different example

e Startin A

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

* Visit B

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Visit H
A: B,D,G
B: H
C: F
D: B,H
B G DG visit (H)
£ visit (B)
G: B visit (A)
H: F

Topological Sort

e Visit F 2 ‘a)

A: B,D,G

B: H’ ’ B 2 H 3
C: F

D: B,H

E: C,D,G visit (F)

F: visit (H)

G: B visit (B)

H: F visit (A)

Topological Sort

e Finish F
e Push F at front: [F]

O
G

T MO Qo P
] o QW e - ®

, H

D, G VlSlt(F)
visit (H)
visit (B)
visit (A)

Topological Sort

* Finish H
e Push H at front: [H, F]

O
G

T MO Qo P
] o QW e - ®
O T

G visit (H)
visit (B)
visit (A)

Topological Sort

e Finish B
e Push B at front: [B,H, F]

O
G

T QMM EOQW P
oo QWMo W
O T

Topological Sort

e (Go back to visit A
e [B,H, F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Visit D
e [B,H, F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Visit C
e [B,H, F]

O
G

T MO Qo P
] o QW e - ®
O T

G visit (C)
visit (D)
visit (A)

Topological Sort

 Finish C
e [C, B,H, F]

O
G

T MO Qo P
] o QW e - ®
O T

G visit (C)
visit (D)
visit (A)

Topological Sort

e Go back and finish D
e [D,C,B,H,F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e \We are back to visit A
e Next nodeis G

e [D,C,B,H, F

,D,G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Visit G
e D, C, B, H,F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Finish G
* [G,D, G, B, H, F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Gobackto A
e [G,D,C,B,H,F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Finish A
° [Ay G! D! 05 B! H5 F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Done with visit(A)
° [Ay G! D! 05 B! H5 F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

e One white node left: E
e Visit E
e [A,G,D,C, B, H,F]

IDIG

T MO Qo P
] o QW e - ®
O T

Topological Sort

e Finish E
e [E,AG,D,C, B, H, F]

O
G

T MO Qo P
] o QW e - ®
O T

Topological Sort

o Key observation from the examples:

* We have a cycle if we ever try to visit a gray node

Topological Sort

e Lemma: A directed graph G = (V, E) is acyclic if and
only if a DFS of G yields no back edges

Topological Sort

e Proof: "="

e |f DFS produces a back-edge (v, 1) then u is an
ancestor of v

e There is a path from u to v in the/tree

e The edge (v, 1) closes a cycle

e from u to v back to u Q\
p———

«

visiting v and discovering a gray node

Topological Sort

e Proof: "&!
e Suppose G has a cycle

e | et u be the first vertex in the cycle to be discovered

Topological Sort

* All other vertices in the cycle are white and there is a
white-path to the node v just in front of u

é cycle Q
0O

Topological Sort

By the white-path theorem:

o \We will discover v from u

* (Though not necessarily through the cycle since
there might be more cycles)

e Thus, (v, 1) is a back edge

Topological Sort

e Theorem: DFS gives a topological sort or discovers a
cycle

e Proof:

e Need to show:

e |f DFS does not discover a cycle, then for each edge
(u,v), wehaveu.f >v.f

Topological Sort

* Proof:
e At the time that we are first looking at (u, v):

e y cannot be gray, because then we would have a
back-edge

Topological Sort

e At the time that we are first looking at (u, v):

e [fVvis white:

e Then by the white path theorem, u becomes an
ancestor of v

e By the parenthesis theoremv.f< u.f

Topological Sort

e Proof:

e At the time that we are first looking at (u, v):
e |f vis black, then u is still be visited, so
e 1 is not yet black

e so,u.f >v.f

e ged

Strongly Connected
Components

 WWW graph:
* Nodes: pages
 Edges: links from one page to another page

 Broder et al. study (2000): 200 million pages and 1.5 billion links

) €3 \\ i / g //' 3 — - —
P n giant strongly . out /\ e
3 .t / 5+ connec ted component Ny b . — =
- / : Islands \J
<3 /

tendrils tendrils

Strongly Connected
Components

e Bowtle:

e Strongly connected component at the center of the WWW
(28%) of all nodes s

\ .
3 4 —
— ////) =
e ‘/ T~y i N 3
giant strongly | t
L,»ln7 ——+ connected component B, 3,03 /\ ! “:J —
= v N =
/ / b
Island
> /

Strongly Connected
Components

e |[slands: Isolated areas of the web

tubes
‘/"v

giant strongly b out ¢
In/ s connected component N - /\

)

tendrils tendfrils

Islands

®

Strongly Connected
Components

* |In: Possible to reach the giant

e Qut: Reachable from the giant

tubes
/Y
e]
- ‘/ & - giant strongly o /’; =
| ou
M'”% - connected component L /\ !
/ / b

Strongly Connected
Components

 Weird stuff: Tubes that move from In to Out bypassing
the giant

tubes
3 /
= . I
N ‘/ P jant strong| D e =
g giant strongly e t
}Hln7 — connected component N 3’03 /\ : ‘:J
= v -y N
/) / \/\ Island

Strongly Connected
Components

e Weird stuff: Tendrils to In and tendrils to Out

tubes

/,
- "/) /

Japss =

- ‘/ & - giant strongly o /’; =

B ol

M'”% —— connected component L /\ ;

/ / »

Strongly Connected
Components

e Strongly connected component:

 Can reach any vertex from any other vertex

Strongly Connected
Components

e Strongly connected component

 This is NOT strongly connected

/®\‘@
\

* Thereis no way to get from D to A

Strongly Connected
Components

e Lemma: Let G; and G, be two strongly connected
subgraphs of a graph G and assume that there is a path
from a vertex in G to a vertex in G, and also a path from

a vertex of G, to Gy, then G, U G, is strongly connected

Strongly Connected
Components

e Proof: Take two nodes a and b in G, U G.

e If both are in G, then there is a path between a and b
because they are in G,

Strongly Connected
Components

e Proof: Take two nodes a and b in G, U G.

e If both are in GG, then there is a path between a and b
because they are in G,

Strongly Connected
Components

e Ifa € V(G,) and b € V(G,), then we can move from a
to u and from u to v and then from v to b.

e After removing cycles, this is now a path from a to b

Strongly Connected
Components

o Similarly, if a € V(G,) and b € V(G,), then we can move
from a to v’ and from v’ to u’ and then from u’ to b.

e After removing cycles, this is now a path from a to b

Strongly Connected
Components

* A single node is a strongly connected subgraph

* For each strongly connected subgraph, we can try to
grow by adding other nodes

 |f a node a has a path to O
and from a strongly
connected subgraph, then
by the lemma, we can add
the node and get a bigger
strongly connected
subgraph

strongly connected

Strongly Connected
Components

e Strongly connected component : A maximal strongly
connected subgraph

* The nodes of any directed graph can be divided into
strongly connected components

Strongly Connected
Components

e Example:

Strongly Connected
Components

e Try it out by growing from individual nodes

Strongly Connected
Components

e Result:

Strongly Connected
Components

* |f we only look at the connected components we get the
SCC metagraph

* Nodes are the strongly connected components

 Edges represent the existence of an edge from one
component to the next

Strongly Connected
Components

Strongly Connected
Components

* The resulting metagraph has to be acyclic

e |f there is a cycle in the metagraph, then by the lemma,
the metanodes can be merged into bigger strongly
connected subgraphs

Strongly Connected
Components

e Example: Add two edges

Strongly Connected
Components

* Now we can start merging via the Lemma

e There is a path from components S to R and vice versa

Strongly Connected
Components

e S0 we merge

Strongly Connected
Components

e There is a path from RS to X and vice versa:

Strongly Connected
Components

* We can merge

Strongly Connected
Components

* Finally, we can merge Z with the new supernode

Strongly Connected
Components

* This can be generalized:

* Theorem: The metagraph is acyclic

Strongly Connected
Components

e How can we apply DFS to the problem of determining
connected components?

e The WWW graph in 2000 would have been to big for
anything but linear time algorithms

Strongly Connected
Components

e Answer:
e Use DFS several times

* |ncluding indirectly on the metagraph

Strongly Connected
Components

Strongly Connected
Components

