Distances in Graphs

Distance Algorithms

e Calculating distances in graphs
e Single source - single destination
* Single source - all destinations

e All sources - all destinations

e Directed Graphs
e Undirected Graphs

Distance Algorithms

 Graph has only positive weights
 Graph can have negative weights

* but not a negative cycle

Distance Algorithms

* Negative cycle example:

e \What is the distance from ato f

\KS

1 1

SN

Distance Algorithms

a-b-d-f costs 3

a-b-c-d-f costs O \Q\
a-b-c-d-e-d-e-b-d-f costs -2 y Q
and a few more times around the >@\

cycle costs even less

Distance Algorithms

e Single Source Algorithms:
* Relaxation

e Fundamental approach to maintain estimates for
distances

 Assume for each vertex, we have an upper bound for
the distance from the source

 Relaxation then improves the distance bound towards
the true value

Distance Algorithms

e Example

12 15 12 14
path from s @ 2 »@ '@ ________ P @
to u with total .~ P :‘

weight <=12 |
" path from s

1o v via u with

@ @ --------- - total weight

| <=15

path from s
to v with total
weight <= 15

Distance Algorithms

* Relaxation:
e u.d distance bound for distance between s and u
e Let (u,v) € E. We relax along (u, v) by setting
e V.d < min (v.d,u.d+w(u,v))

Distance Algorithms

e Relaxation:

* |n addition, we can maintain a predecessor field at all
nodes

» Because we do not only want the distance, but also
how we got there

e When we relax, we set the predecessor field in v to u if

we replace v . d with u . d + w(u, v) because the latter
IS smaller

Bellman-Ford

 Bellman-Ford Single Source Distance Algorithm
 We initialize by:
e Source s gets distance 0 and itself as predecessor

e Every node u adjacent to s gets distance w(s, 1) and
predecessor

Bellman-Ford

e Best path from source s to node u cannot have more than
| V| — 1 edges in it

e So, we relax with every edge a total of | V| — 1 times

* |f we can relax afterwards, something is fishy:

* We have found evidence for a negative cycle

Bellman-Ford

e def Bellman_Ford(s, V, E):
e |nitialize(s,V,E)
e foriin range(len(V)-1):
e for (u,v) in E:
e relax(u,v)
e for (u,v)in E:
e if relax(u,v) changes the distance in v:
e return 'negative weight cycle detected’

e return 'done’

Bellman-Ford

e Example: After initialization

O

AN
g
N

Bellman-Ford

Bellman-Ford

Bellman-Ford

Bellman-Ford

cﬁ{&},

\#\
e

.

Bellman-Ford

d
R
2
2
00
> f 3 >

Bellman-Ford
bk

d
2
2
00
> f 3 >

Bellman-Ford
< — (%}3 Relax hir§¥\

d
2
2
00
> f 3 >

Bellman Ford

m i

Bellman-Ford

d
2
2
00
> f 3 >

Bellman-Ford
TN @

S

N D

Bellman-Ford

cﬁ{&},

Y)\
L

.

Bellman-Ford

Bellman-Ford

Bellman-Ford

* Now, we can start again

Bellman Ford

AT

<

Bellman-Ford

f?\ i

SN

Bellman-Ford

/?\ i

S

Bellman-Ford

A9

S

Bellman-Ford

A

<

Bellman-Ford

/?\ i

@@ 54)\

Bellman-Ford

/?\ i

S

Bellman-Ford

/?\ i

@ ¥\

Bellman-Ford

/?\ i

C<*<ﬁ 54)\

Bellman-Ford

/?\ i

<%

Bellman-Ford

/?\ i

€

Bellman-Ford

AT

-3

€4

N N

Bellman-Ford

/?\ i

<

Bellman-Ford

* The second round, nothing changed
 This was an easy example, after all

e We can therefore shortcut the rest, decide that there are
no cycles, and finish

Bellman-Ford

* Now, let's create a negative weight cycle b-d-e-f-b

AR

S

NN Ny

Bellman-Ford

e The first time around, we would get something like this

* Your mileage will vary because of choices in the
ordering of edges

Bellman-Ford

e |f we relax Igd , We get

CH/%

Bellman-Ford

Bellman-Ford

e Then along f-b

o\

—

2
31\5
2/6 1 /
Yy -12
S 3 b F
4 7
4

(@)
0 1 -9
2 -7 2
AN |
. . X f\14 ; 9-2

Bellman-Ford

e After we relax with (b,d), we see that the predecessor
graph no longer reaches s. We also can see that every

time we relax with the edges in the graph, we lower
distances,

DAG's

* |f we have a directed acyclic graph:

 We can use topological sort of vertices:
U=lu,u,us,....,u]

e We then execute
e foruin U:
 for vin u.adjacency:
e relax with (u,v)

 This is a very fast algorithm for DAG's only

Dijkstra's Algorithm

e Single source all destinations algorithms that only
assumes that weights are all positive

* Also uses a Greedy strategy

e Builds a subset S of nodes for which the exact distance is
kKnown

Dijkstra's Algorithm

e Example:

e Dijkstra starts with just the source in §

 We initialize all nodes (but do not write infinities here)

Dijkstra's Algorithm

e Dijkstra then adds the node 1 with the smallest distance
to S and then uses the edges adjacent to u to relax

e Add a and relax (a,b),), and (a,e)

/\ A

2 11 1

Dijkstra's Algorithm

e The current distances from s are 2, 3,4, 7, and 13

* We pick b and relax along its outgoing edges

2 4
5

Ca

NN

Dijkstra's Algorithm

e Now c and d is the lowest distance node, pick c

Dijkstra's Algorithm

* Now pickd

A
N NN

Dijkstra's Algorithm

e Thene

2 4
O\5 ?
2/6 11 5
) 3 9
-3 Km >
4 ! 5 7 2
4 12 11
8 > f 3

*9

Dijkstra's Algorithm

/K5 ’
2 6 11 S
: 3
- 3 12
4 7

9
—>
2 4 2
4 12 11
8 f 3

Dijkstra's Algorithm

 And finally f

2 4
2 6 11 1/5
-~ 3 9
= 3 > 12 ——»
4 7 2 ! 2
4 12 11
8 > 3 >

Dijkstra's Algorithm

* To find the best way from s to g, we just start in g and follow
the predecessor link

iy

NN e

* g<—e<—d<—b<-—s

Dijkstra's Algorithm

def dijkstra(s, V, E):
initialize(s,V,E)
S = [|
pg = priorityqueue (V)

while pqg:
u = pg.pop
S.append (u)

for v 1n u.adjacent:
relax (u,v) #changes possibly v.d

#and therefore pqg

Dijkstra's Algorithm

e Correctness of Dijkstra's algorithm

 |Loop invariant for while loop:

e All nodes in S have the correct distance from s

Dijkstra's Algorithm

e |nitially, the loop invariant is vacuously true

e Now we need to show that each iteration of the while loop
leaves the invariant valid

e Assume that this is not true

e And that we went wrong when u was selected and put
into S

Dijkstra's Algorithm

@ o \‘OQ
® o & O
O . -
" - O
° . 20~ 5 5
® Y0

Dijkstra's Algorithm

e We can exclude the casethats = uso S # @

* We can also exclude the case that there is no path
between s and u

e Because then the distance field in # would never be
updated and stay at infinity, which is the correct value

Dijkstra's Algorithm

e So, there is a path from s to u that leads from to outside
of S.

e | et x be the last vertex on this path so that the part from s
to x is completely in S and y the first node not in S

@5
O O

- 900§

/'

Dijkstra's Algorithm

e By the invariant, x € S has the correct distance field with
x.d=o(s,x)

e Because x € S, we relaxed along the edge (x, y)

e Because x and y are on a shortest path from s to u, the
shortest path from s to y also goes through x

e Therefore,y.d =x.d+ w(x,y) = o(x,s) + w(x,y) at
this time

e But then this value can no longer change, so it is still
true

Dijkstra's Algorithm

* Now, we selected u before y
e Thisimpliesu.d <y.d
 But because y is on the shortest path to u
e v.d=0(s,y) <o, u)<u.d<u.d

e Which implies that o(s, y) = o(s, u) and y = u (because all
weights are positive)

e But we have already seenthat y.d = u . d was set
correctly

e This contradiction proves correctness

Dijkstra's Algorithm

e Dijkstra's algorithm runs in time dependent on the
implementation of the priority queue

 We update the priority queue potentially for each edge
analyzed, which is all of them

 Easiest implementation uses time quadratic in the
number of vertices

* This gives a total runtime quadratic in the number of
vertices because |E| = O(| V\z)

Floyd's and Warshal's
Algorithm

 Dynamic programming approach to the all sources - all
destinations shortest path problem

 What is the shortest path from u to v going through nodes in
V{5 Vo, - .., Vi } @s intermediaries?

o Call its length 0,(u, v)
e Two cases: v, is not on the shortest path:
® 5]{(”’ V) — 5/(—1(”’ V)

e Or: vy, is on the shortest path

° 5k(u9 V) — 5k—1(u9 uk) 5k—1(uk’ V)

Floyd's and Warshal's
Algorithm

Start out with
w(u,v) if there is an edge between 1 and v
5()(“9 V) —

o0 If there is no edge

Calculate
O (u,v) = min(o,_(u,v), 0,_(u, u) + 6,_{(u, v))

If k = | V], then o,(u,v) = 6(u, v)
To reconstruct shortest path, give way points.

o If 4, is an intermediate node, then put #;, down for the
connection (u, v)

Floyd's and Warshal's
Algorithm

 We can use a single matrix D for the distance calculation

e Initially, D contains the weights and 11 only nones

D =W
for k 1in {1 .. n}:
for 1 in {1 .. n}:
for J 1in {1 .. n}:

dfi,3] = min(d[1i,3], dli,k]+d[k,]]

Floyd's and Warshal's
Algorithm

e Example: @\) ,@& . 7%@

15 8

Set-up

Floyd's and Warshal's
Algorithm

e Example: @\) 'CR .

8 7

2 3
15 4
2

k=1: no changes

for k in {1 .. n}:
for 1 in {1 .. n}:
for 7 in {1 .. n}:
d[i,j] = min(d[i,3], dl[i,k]+d[k,]]

Floyd's and Warshal's
Algorithm

e Example: @\) 'CR .

8 7

2 3
15 4
2
k=2

8
0 4 7
0O 5

2 5 10 O

for k in {1 .. n}:
for 1 in {1 .. n}:
for 7 in {1 .. n}:
d[i,j] = min(d[i,3], dl[i,k]+d[k,]]

Floyd's and Warshal's
Algorithm

e Example: @\) 'CR .

8 7

2 3
15 4
2
k=3

10 O

for k in {1 .. n}:
for 1 in {1 .. n}:
for 7 in {1 .. n}:
d[i,j] = min(d[i,3], dl[i,k]+d[k,]]

Floyd's and Warshal's
Algorithm

e Example: @\) 'CR .

8 7

2 3
15 4
2
k=4

10 O

for k in {1 .. n}:
for 1 in {1 .. n}:
for 7 in {1 .. n}:
d[i,j] = min(d[i,3], dl[i,k]+d[k,]]

Floyd's and Warshal's
Algorithm

e Example: @\) 'CR .

8 7

2 3
15 4
2
k=5

9

!

4

0

9 0

for k in {1 .. n}:

for 1 in {1 .. n}:
for 7 in {1 .. n}:

dfi,3] = min(df1i,3], d[i,k]+d[k,]]

Floyd's and Warshal's
Algorithm

e Example: (j\ >Q\ ﬁ Going from 1 to 5:
D matrix: 12

I1 matrix: go through 3
1 to 3: go through 2
3 to 5: direct

5
3
0

10

5 9 0

for k in {1 .. n}:
for 1 in {1 .. n}:
for 7 in {1 .. n}:
d[i,j] = min(d[i,3], dl[i,k]+d[k,]]

Floyd's and Warshal's
AIgOrIthm Going from 5 to 4:
* Example: Q\ >Q\ ﬁ I?ITnaattr:i)i:ggo through 2

5 to 2: direct

2 to 4: go through 3
2 to 3: direct

3 to 4: direct

route is 5-2-3-4

5
3
0

10

5 9 0

for k in {1 .. n}:
for 1 in {1 .. n}:
for 7 in {1 .. n}:
d[i,j] = min(d[i,3], dl[i,k]+d[k,]]

