Graph Algorithms

Thomas Schwarz, SJ

Searching in Graphs

 Exploring a maze
* You are in the middle of a maze
e How do you get out
* Ariadne's solution:

e Use a thread of glittering
jewels in order to avoid
using the same edges
several times

e Follow a wall

e Works for simple mazes

Tremaux's Algorithm

e Tremaux's Algorithm aka Hansel
and Gretel's aka Ariadne's o

e Carry bread and leave bread
crumbs on each path you follow

* |f you come to an intersection, J
follow one where there are no
bread crumbs, if you can — | \ —

e |f you come to an intersection
and everything has already been « |f not, follow a path that has
marked or you are at a dead- only one trail of crumbs.
end, turn around if you came at
a path that has only one thread
of crumbs

Tremaux's Algorithm

e Example

Tremaux's Algorithm

.....

Tremaux's Algorithm

.......

- - ® ®
e 8 QC aecal|] Ve e-

Trémaux’
aux's Algorithm

o =
-"’

e 8 =
-
--. 8
- ®
- ®

Tremaux's Algorithm

-
e 8 20 ot e e .

Tremaux's Algorithm

e https://en.wikipedia.org/wiki/
File:Tremaux_Maze_Solving_Algorithm.gif

Tremaux's Algorithm

e At the end:

o All paths will be double marked and you will end up at
the starting point

 This means that you walked by the entry

Searching in Graphs

* We can use this idea for defining the first graph exploration
algorithm.

 Goal is to visit all vertices
* \We use a timer:
e Startsoutat 0
* Incremented every time we do something
* All nodes get marked with a
* Discovery time: First time that we see the node

* Finishing time: When we are done with the node

Breadth First Search

e Color a vertex
e white: vertex has not yet been discovered

e gray: vertex has been discovered, but still needs to be
a base for exploration

e black: vertex has been dealt with

Breadth First Search

bfs (G, s) :

for v 1in G.vertices:
v.color = 'white'
v.dist = 1inf
v.pred = None

s.color = 'gray'

s.dist = 0

s.pred = None

queue = |[]

queue.append (s)
while queue:

u = queue.pop (0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dist = u.dist+l1
v.pred = u

queue.append (V)
u.color = 'black'

Breadth First Search

e Example: s=A

Breadth First Search

while queue:

* queue = {A} u = queue.pop (0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
QD v.dist = u.dist+l
v.pred = u

queue.append (V)
u.color = 'black'

Breadth First Search

e queue ={}

e U=A

while queue

u = queue.pop(0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)

u.color

= 'black'

Breadth First Search

while queue:

° queuezz{} u = queue.pop (0)
for v in u.adjacency:
e U=A if v.color == 'white'
v.color = 'gray'

v.dist = u.dist+l

v.pred = u

queue . append (v)
u.color = 'black'

e queue = {B,C,D}

Breadth First Search

while queue:

° queuezz{} u = queue.pop (0)

for v 1n u.adjacency:
e U=A if v.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)
= 'black'

u.color

e queue = {B,C,D}

Breadth First Search

while queue:

* queue = {C,D} u = queue.pop (0)

for v 1n u.adjacency:
e u=0B if v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)
= 'black'

u.color

e queue = {C,D}

Breadth First Search

while queue:

* queue = {C,D } u = queue.pop (0)
for v in u.adjacency:
e u=B if v.color == 'white'

v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

2 u.color

e queue = {C, D, E}

Breadth First Search

while queue:

* queue = {C,D,E} u = queue.pop (0)

for v 1n u.adjacency:
e u=B if v.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)
= 'black'

2 u.color

e queue = {C,D,E}

Breadth First Search

while queue:

* queue = {C,D,E} u = queue.pop (0)
for v 1n u.adjacency:
e u=0C if v.color == 'white'

v.color = 'gray'
v.dlist = u.dist+l

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue = {D,E}

Breadth First Search

while queue:

* queue = {D,E} u = queue.pop (0)
for v in u.adjacency:
e u=0C if v.color == 'white'

v.color = 'gray'
v.dist = u.dist+l

v.pred = u
queue . append (v)
gdcolor = 'black'

e queue ={D, E, F}

Breadth First Search

while queue:

* queue = {D,E,F} u = queue.pop (0)
for v 1n u.adjacency:
e u=0C if v.color == 'white'

v.color = 'gray'
v.dlist = u.dist+l

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue ={D, E, F}

Breadth First Search

while queue:

* queue = {D,E,F} u = queue.pop (0)
for v 1n u.adjacency:
e u=D if v.color == 'white'

v.color = 'gray'
v.dlist = u.dist+l

v.pred = u
queue.append (V)
gdcolor = 'black'

e queue = {E, F}

Breadth First Search

e queue = {E,F}
e u=D

e queue ={E, F G}

while queue

u = queue.pop (0)
for v in u.adjacency:
1f v.color == 'white'
v.color = 'gray'

2u.color

v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

Breadth First Search

while queue:

* queue = {E,F,G} u = queue.pop (0)
for v 1n u.adjacency:
e u=D if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
2u.color = 'black'

e queue ={E, F G}

Breadth First Search

while queue:

* queue = {EsF,G'} u = queue.pop (0)
for v 1n u.adjacency:
e u=E if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
2u.color = 'black'

e queue ={F, G}

Breadth First Search

while queue:

* queue = {F,G} u = queue.pop (0)
for v in u.adjacency:
e u=E if v.color == 'white'
v.color = 'gray'

1 v.dist = u.dist+l

v.pred = u
queue . append (v)
u.color = 'black'

2

e queue ={F G, H}

Breadth First Search

while queue:

* queue = {F,G,H} u = queue.pop (0)
for v 1n u.adjacency:
e u=E if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue ={F G, H}

Breadth First Search

while queue:

* queue = {G,H} u = queue.pop (0)
for v 1n u.adjacency:
e u=F if v.color == 'white'
v.color = 'gray'

v.dlst = u.dist+1

v.pred = u
queue.append (V)
u.color = 'black'

2

e queue = {G, H}

Breadth First Search

while queue:

* queue = {GaH} u = queue.pop (0)
for v in u.adjacency:
e u=F if v.color == 'white'
v.color = 'gray'

v.dist = u.dist+l

v.pred = u
queue . append (v)
u.color = 'black'

2

e queue = {G, H}

Breadth First Search

e queue = {G,H}

e u=F

e queue = {G, H}

while queue

u = que
for v 1
if v

5 u.color

ue.pop (0)

n u.adjacency:
.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)

= 'black'

Breadth First Search

e queue = {G,H}

e u=G

e queue = {H}

while queue

u = queue.pop(0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)

2 u.color

= 'black'

Breadth First Search

e queue = {G,H}

e u=G

e queue = {H}

while queue

u = queue.pop (0)
for v in u.adjacency:
1f v.color == 'white'
v.color = 'gray'

2 u.color

v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

Breadth First Search

e queue = {H}
e u=G

e queue = {H}

while queue

u = que
for v 1
if v

5 u.color

ue.pop (0)

n u.adjacency:
.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)

= 'black'

Breadth First Search

e queue ={}

e u=H

e queue ={}

while queue

u = queue.pop(0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
v.dlist = u.dist+l
v.pred = u
queue.append (V)

2 u.color

= 'black'

Breadth First Search

e queue ={}

e u=H

e queue ={}

while queue

u = queue.pop (0)
for v in u.adjacency:
1f v.color == 'white'
v.color = 'gray'

2 u.color

v.dist = u.dist+l
v.pred = u
queue . append (v)

= 'black'

Breadth First Search

e queue ={}

e u=H

e queue ={}

while queue

u = que
for v 1
if v

5 u.color

ue.pop (0)

n u.adjacency:
.color == 'white'
v.color = 'gray'
v.dist = u.dist+l
v.pred = u
queue.append (V)

= 'black'

Breadth First Search

As you can see, BFS is just a version of Dijkstra's
algorithm

Distance calculates accurately the distance from the
starting point

The pred property allows us to generate a shortest path
from the initial node

We now prove these properties exactly

Breadth First Search

e Lemma: Let G = (E, V) be an undirected or directed
graph. Let s € V be an arbitrary vertex. Then for any

edge (u,v) € E

e 0(s,v) <o(s,u)+ 1 ©

o0

e Recall: 6(a, b) is the length of a shortest path from a to b

Breadth First Search

e Proof:

e Assume first that o(s, u) = o0, i.e. there is no path from
s to u

e Then o(s,v) < oo = o(s, u) + 1 regardless whether
there is a path from s to v.

Breadth First Search

e Proof:

e Next assume that o(s, 1) < 00, i.e. that there is a path
from s to u.

e Extend this path to a path from s to v.

e This path has length o(s, u) + 1.

_8(s.0)
e Then 6(s, v) = min(Lenght of a path from s to v)

/////

o -0 e < Length of this path
o =0(s,u)+1

Breadth First Search

e Lemma: Let Let G = (E, V) be an undirected or directed
graph. Let s € V be an arbitrary vertex. Run BFS on G
and s. Then for every vertex v € V, v.dist > o(s, v).

 This means that the calculated distance in BFS is at
least as large as the actual distance

Breadth First Search

* Proof by induction on the number of enqueue operations

* Notice that v.dist is assigned just when we are about to
engueue it

while queue:

u = queue.pop (0)
for v 1n u.adjacency:
1f v.color == 'white'
v.color = 'gray'
- - > v.dist = u.dist+l

v.pred = u
queue.append (V)
u.color = 'black'

Breadth First Search

e |nduction Start:
e When s Iis enqueued all distance properties are infinity
e with the exception of s which has dist 0O

At this point, for every vertex v € V, v . dist > o(s, v)

Breadth First Search

* |nduction step:

* The value of the distance
property only changes when
we make the assignment just
before enqueuing a white

vector

* |nduction hypothesis implies

u . dist > o(s, u)

e Therefore

while queue:
u = queue.pop (0)
for v in u.adjacency:

if v.color == 'white'
v.color = 'gray'
- - > v.dist = u.dist+1l

v.pred = u
queue.append (v)
u.color = 'black'

v.dist = u.dist+1 > o(s,u) + 1 > 6(s, v)

Breadth First Search

e Afterwards, the vertex v is no longer white and never
changes its distance value

Breadth First Search

* We now need to see more closely how the algorithm
works:

* We can think of the queue as the boundary between
black and white vertices that moves slowly away from s

e Lemma: If the queue has vertices (v, v,, ..., v,) with v,
being the head, then

e v, .dist < v,.dist+1
* and

o v;.dist <v; | .distfori=12,...,n—1

Breadth First Search

* Proof by induction on the number of queue operations

e |nitially, the queue has only s in it, so the property
certainly holds

* The queue changes through enqueuing and dequeuing
operations

Breadth First Search

 If the head v, is dequeued, v, becomes the new head.

o (If there is no v, then the queue is empty, and the
assertion holds vacuously)

o Before dequeuing, v, . dist < v, . dist, therefore
v, .dist < v, .dist+1 < v, . dist

 Therefore, the first inequality is true

* The second assertion just looses the first inequality

Breadth First Search

e Ifanewelementv, ;isenqueued, we just dequeued a
vertex u and are adding all white vertices adjacent to u

while queue:
u = queue.pop (0)
for v 1in u.adjacency:

if v.color == 'white'
v.color = 'gray'
- - > v.dist = u.dist+1l

v.pred = u
queue.append (v)
u.color = 'black'

e Therefore, v, .dist = u.dist+1.

e By induction hypothesis, u . dist < v, . dist because u and v,
were just in the same queue

Breadth First Search

 Therefore
e v .dist=u.dist+1 < v .dist+1

* Proving the first assertion

Breadth First Search

* From the induction hypothesis, we also have
e v .dist < u.dist+1

e which implies that
e v, .dist <u.dist+1 <v ., .dist

 This is the only new part of the second assertion

Depth First Search

e Breadth first search
uUses a queue

* |n Python, a
queue is a list to
which you
append and from
which you pop

e C++ and Java
have libraries that
implement
queues

def bfs (G, s):

for u in G.Vertices:
u.color = “white”
u.d = 1infty
u.pred = Null

s.color=%“gray”

s.d = 0
s.pred = Null
queue = Queue.queue ()

queue.enqueue (s)
while queue:

u = queue.head()
for v in u.adjacency list:
1f v.color=="white”
v.color = “gray”
v.d = u.d + 1
v.pred = u

queue.engqueue (V)
u.color=“black”

Depth First Search

* Depth first search replaces the queue with a stack

* This changes the behavior of the algorithm
considerably

 Remarkably, the resulting Depth First Search is the
more important and interesting algorithm

Depth First Search

 Depth first search
e \ersion 1

e Change queue
into stack

e (Getrid of the
distance

def dfs (G, s):

for u in G.Vertices:
u.color = “white”
u.d = 1infty
u.pred = Null
s.color=%“gray”
s.pred = Null
queue = Stack.stack()
stack.push (s)
while stack:
u = stack.pop ()
for v 1n u.adjacency list:
1f v.color=="“white”
v.color = “gray”
v.pred = u
stack.push (v)
u.color="black”

Depth First Search

 We add visiting times to our nodes:
e Discovered time

* When a node turns gray

* Finished time
* When a node turns black
» Because
e some derived algorithms use it
e in order to argue about DFS

* Whenever we change a node color, we increment a clock

Depth First Search

 Unlike BFS, a typical DFS will want to classify all nodes

e Have a DFS_Visit(start_node) that starts in a node and
visit what can be available

e Have a DFS() function that uses the visit function
repeatedly if necessary

Depth First Search

dfs visit (u):
global clock
clock += 1
u.d = clock

u.color = 'gray'
for each v 1n u.adjacency:
1f v.color == 'white'
v.pred = u
dfs visit (v)
u.color = 'black'

clock += 1
u.f = clock

Depth First Search

dfs (G) :
for vertex 1n G.V:
vertex.color = 'white'
vertex.pred = None
global clock = 0
for vertex 1n G.V:
1f vertex.color = 'white':
dfs visit (vertex)

Depth First Search

 Understanding the algorithm
e The stack is hidden in the recursive call

e \We can unroll it

 But need to be careful as something on the stack can
be already found and processed via another route

Depth First Search

dfs visit (u):
stack = [u]
while stack:
u = stack.pop ()
1f u.color=="'white'
for v 1n u.adjacency:
1f v.color=="'white':
stack.push (v)

Depth First Search

Start with C

OS stack 1s
dfs visit (C)

dfs visit (u):
:=E:>' u.color = 'gray'
for each v in u.adjacency:
if v.color == 'white'

dfs visit (v)
u.color = 'black

Depth First Search

Start with C

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v 1n u.adjacency:
::E:>» if v.color == 'white'
dfs visit (v)
u.color = 'black

We set the clock to 1
We pick arbitrarily E
from the adjacency list

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v 1n u.adjacency:
1f v.color == 'white'

::E:>. dfs visit (v)
u.color = 'black

We call dfs visit (E)

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

-

dfs visit(u):

:=E:>» u.color = 'gray'
for each v in u.adjacency:

if v.color == 'white'
dfs_visit(v)
u.color = 'black

u = E, set E's discovery
time and set the
predecessor link

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

-

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:

1f v.color == 'white'
E:E:>> dfs visit (v)

u.color = 'black

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

-

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:

1f v.color == 'white'
E:E:>> dfs visit (v)

u.color = 'black

we pick v = H and call
dfs visit (H)

Depth First Search

OS stack

dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):

=>

u.color = 'gray'

for each v in u.adjacency:

if v.color == 'white'
dfs_visit(v)
u.color = 'black

we pick v = H and call
dfs visit (H)
this colors H gray

Depth First Search

OS stack
dfs visit(
dfs visit (
dfs visit (
dfs visit (

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

we pick v = I and call
dfs visit (I)
this colors I gray

Depth First Search

OS stack
dfs visit (L)
dfs visit (I)
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

we pick v = L and call
dfs visit (L)
this colors L gray

Depth First Search
(A —>(8)

OS stack
dfs visit (L)
dfs visit (I)
dfs visit (H)
(E)
(C)

dfs visit
dfs visit

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

L has no vertices 1in
the adjacency list
Therefore, we finally
go to the last line

Depth First Search
(A —>(8)

OS stack
dfs visit
dfs visit
dfs visit
dfs visit

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We finish dfs visit (L)
and are back at the
execution of dfs visit(I)

Depth First Search

OS stack
dfs visit (J)
dfs visit (I)
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We pick a white vertex
reachable from I: J

Depth First Search

OS stack
dfs visit (J)
dfs visit (I)
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

There are no white nodes
in the adjacency list of J

Depth First Search

OS stack
dfs visit
dfs visit
dfs visit
dfs visit

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We close the call on J and
are back to dfs wvisit (I)

Depth First Search

OS stack
dfs visit (K)
dfs visit (I)
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (I) now goes to K

Depth First Search

OS stack
dfs visit(
dfs visit (
dfs visit (
dfs visit (

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (K) finishes

Depth First Search

OS stack
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (I) runs agailn
but finds no white vertices,
so 1t finishes

Depth First Search
(A —>(8)

OS stack
dfs visit (H)
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (I) runs agailn
but finds no white vertices,
so 1t finishes

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (H) runs agailn
but finds no white vertices,
so 1t finishes

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

dfs visit (E) runs agailn

Depth First Search

OS stack
dfs visit (F)
dfs visit (E)
dfs visit (C)

dfs visit(u):

u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'

dfs_visit(v)
u.color = 'black

Depth First Search

OS stack
dfs visit (G)
dfs visit (F)
dfs visit (E)
dfs visit (C)

dfs visit(u):

u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'

dfs_visit(v)
u.color = 'black

Depth First Search

OS stack
dfs visit (F)
dfs visit (E)
dfs visit (C)

dfs visit(u):

u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'

dfs_visit(v)
u.color = 'black

Depth First Search

OS stack
dfs visit (E)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

Nothing left 1n F

Depth First Search

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

Finishing E

Depth First Search
(A —>(8)

OS stack
dfs visit (D)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

LLast white vector 1n
the adjacency list of
C 1s D

Depth First Search
(A —>(8)

OS stack
dfs visit (D)
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

D has no white wvertices
1n 1ts adjacency 1list

Depth First Search
(A —>(8)

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We are back 1n C

Depth First Search
(A —>(8)

OS stack
dfs visit (C)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

Now we close C

Depth First Search

OS stack

dfs visit(u):

u.color = 'gray' 9,10
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = '"black 5,6

Now we close C

Depth First Search

e At this point, the original call to dfs_visit(C) is done

e However, since there are still white nodes left, we have to
pick one of them and visit again.

e We pick A

Depth First Search

1

OS stack
dfs visit (A)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

A 1s the only node 1n
the stack

OS stack
dfs visit (B)
dfs visit (A)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We discover B from A

Depth First Search

<l g 0023

OS stack
dfs visit (A)

dfs visit (u) : 9,10
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v) 5,6
u.color = 'black

We can finish B

Depth First Search

0S stack 21,24
dfs visit (A)

dfs visit(u):
u.color = 'gray'
for each v in u.adjacency:
1f v.color == 'white'
dfs visit (v)
u.color = 'black

We can finish A

Depth First Search

e Now we are done

* The predecessor relationship has given us a nice set of
trees — a "forest”

Depth First Search

* Runtime of algorithm
* We look at all the elements of the adjacency lists
e For each, we do constant work

e But we also need to do some Initial work for all vertices

e Runtimeis @(max(|V|,|E]|)

Depth First Search

* Properties:
e Parenthesis Theorem

e |f for two nodes

e If[u.d,u.fln|[v.d,v.f] = @ then neither u
and v are descendants in the predecessor forest

o If[u.d,u.f]Clv.d,v.f]thenuisa
descendant of v

o If[u.d,u.f]D|v.d,v.f]thenvisa
descendant of u

Depth First Search

* White Path Theorem
e Vis adescendant of u exactly if

e At the time of discovery of u there is a path from u to v
consisting entirely of white vertices

Depth First Search

e (Classification of edges:

* Tree edges are edges in the depth first tree

Depth First Search

e Back edges are edges go from a descendant to an
ancestor

e Simple example: 1,6 2,5
e Startin A, discover B, discover C

e Edge from C to A is a back edge 13’4

Depth First Search

* Forward edges

 Edges connecting an ancestor to a descendant, but
that are not in the tree

Depth First Search

e Cross Edges: anything else

 Can be in the same tree or connecting different trees

Depth First Search

e |f we look at an edge (u,v) during depth first search for the
first time

* (In an undirected graph, we look at each edge twice)
 |fvis white: tree edge
e |fvis gray: back edge

e |f vis black: forward or cross edge

Depth First Search

* |n a depth first search on an undirected graph, every edge is
either a tree edge or a back edge

Let (1, V) be an edge and assume that u is discovered first:
u.d<v.d

The algorithm discovers and finishes v before i, so

u.f>v.f

If DFS uses the edge (i, v) from u, then v is white, and
(u,v) becomes a tree edge

If DFS uses the edge (u, v) from v, then u is gray at this
moment and this becomes a back edge.

