Spanning Trees

Thomas Schwarz, SJ

Problem

- Networking: LAN
 - Switches are connected by links
 - Cycles can create problems:
 - Broadcast radiation
 - A broadcast or multicast message is repeatedly received by the same switch and resend and resend and resend and resend ...

Problem

• Solution:

 Use an acyclic subgraph that contains all switches for broadcasting, multicasting, and in general for addressing purposes

Trees

- A tree is a graph that is:
 - acyclic
 - connects all vertices

Weighted Graphs

- We look at graphs where each edge has a weight
 - Depending on application, some weights can be negative or all weights have to be positive

Weighted Graphs

• Other example:

- Given a weighted graph:
 - ullet Find a subset T of edges such that
 - connects all vertices
 - is acyclic
 - Total weight is minimal

$$w(T) = \sum_{(u,v)\in T} w(u,v) \longrightarrow \infty$$

 Called a minimum weight spanning tree, but "weight" is usually omitted

- Two greedy algorithms, Kruskal's and Prim's
- Use a loop invariant:
 - Let A be the set of edges currently selected
 - Invariant: A is a subset of some minimum spanning tree
 - At each step of the algorithm: only add an edge (u, v) if the invariant remains true after inserting the edge
 - Such an edge is a safe edge

- Generic MST algorithm
 - $1.A = \emptyset$
 - 2. While A is not a spanning tree
 - 1.Find a safe edge
 - 2.Add the safe edge to A
 - 3.Return A

A cut is a partition of the vertices of the graph

Edges can "cross the cut"

 Edges are "light" if the cross the cut and no other edge crossing the cut has a smaller weight

A cut respects A if no edge of A crosses the cut

• Theorem: Let A be a subset of E included in some minimum spanning tree, let (S, E - S) be a cut respecting A and let (u, v) be a light edge crossing the cut. Then this

edge is safe

Proof:

- We have a subgraph
 A that is part of a
 minimum spanning
 tree T
- We have a minimum weight crossing edge
 (u, v) crossing the cut that separates A from the rest of the graph

This set A has two different connected components and consists of red vertices

T is given by the fatter edges

- Case 1: The edge is part of T
- Then there is nothing to show since adding the edge still gives us a subgraph that is part of a minimum spanning tree

cut

Case 2: The edge is not part of T

Edges and vertices in A are red Edges in T are fat This includes the red edges u and v are at the lower left

- In this case, we need to construct a new minimum weight spanning tree
- Observe that there has to be an edge of T that crosses the cut
 - Because we can travel from every node to every node in T and not all nodes are in A

• This edge in T that crosses the cut also has weight 2 in our example, but for sure, it has weight \geq the weight of (u, v)

There is another edge

• There has to be a path from u to v in T because T is a spanning tree

 This path has to have at least one edge that crosses the cut

- Take one of these edges and replace it with (u, v) in T
- Call the result T'

- T' still connects all of the vertices
 - If a, b are two vertices that are connected in T by the deleted edge:
 - Can reroute through the edge (u, v)
 - T' has a weight changed by replacing the weight of (u, v) with the weight of the deleted edge
 - But because the weight of (u, v) is minimal among all edges crossing the cut and the deleted edge also crossed the cut, T' weight can only be lower
- Thus, A after adding the edge (u, v) fulfills still the invariant. qed

- Kruskal's algorithm works by joining subtrees
 - Start out with all vertices being their own subtrees
 - Thus, the cut is around all of the vertices
 - While we have more than one subtree:
 - We select a cutting edge (i.e. between different subtrees) with minimum weight
 - This combines two subtrees

- Because Kruskal's algorithm only adds safe edges, it generates a minimum weight spanning tree
- How to organize it?
 - We can order all of the edges by weight
 - And then remove edges if they no longer are cutting edges
 - Best way:
 - Maintain vertices in the same subtree in a set
 - Determine quickly whether something is in a set

- Best solution known to humanity for the disjoint set problem:
 - have vertices organized by a directed edge to the "set leader"

 $\{a\}, \{b\}, \{c\}, \{d\}, \{e\}, \{f\}, \{g\}, \{h\}$ $\begin{tabular}{c} \hline c \\ \hline d \\ \hline \end{tabular}$

• If we unite $\{a\}$ and $\{b\}$, we have one point to the other

 ${a,b},{c},{d},{e},{f},{g},{h}$

• Same if we unite $\{g\}$ and $\{h\}$

 If we ask whether b and g are in two different components, we follow the arrow and see whether the leaders are the same or not.

- This can be optimized:
 - There is the possibilities of having long chains

- When we join, we connect one leader to the other leader
 - Always make the larger set the head

 ${a,b,cd}, {e,f} \cup {g,h,i,j},$

- When we do a look up:
 - What is the head of c?

Follow three links to get to 'h'

- When we do a look up:
 - Reconnect the node and all we travel to directly to the head

Best possible case: Every node points directly to the head

- With this "disjoint union data structure":
 - Maintaining the disjoint set data structure costs $\alpha(|V|)$ per operation where α is a function that grows very slowly
 - Kruskal's algorithm then runs in time $O(|E|\log(|E|))$

- Prim's algorithm starts A at a single node and then adds edges to it.
- Thus, the intermediate results are always connected
 - Maintain a priority queue of all other vertices
 - The vertices are ordered by distance to A

- We use the same example as before
- We can start at any node

- The priority queue tells us which node to select
- After selecting edge and node, we need to update some nodes
- Namely those in the adjaceacy list of the new node

- Because Prim's algorithm only selects safe edges, it correctly calculates a minimum spanning tree
- The run-time of Prim's algorithm depends on the implementation of the priority heap
 - The best type is a Fibonacci heap
 - In which case the run time is $O(|E| + V \log(|V|))$
 - Or we can use a normal priority heap which gives us
 - $O(E \log(V))$