Spanning Trees

Thomas Schwarz, SJ



Problem

 Networking: LAN
e Switches are connected by links
 Cycles can create problems:
 Broadcast radiation

* A broadcast or multicast message is repeatedly
received by the same switch and resend and
resend and resend and resend ...



Problem

e Solution:

 Use an acyclic subgraph that contains all switches for
broadcasting, multicasting, and in general for
addressing purposes




Trees

 Atreeis a graph that is:
e acyclic

e connects all vertices



Weighted Graphs

* We look at graphs where each edge has a weight

* Depending on application, some weights can be
negative or all weights have to be positive

R,
WEEN:
BV



Weighted Graphs

e Other example: il | LEGEND

LS
- - A o
. - - Distarve o» Niles
° b . o b Y hetwren lncabiam
I 2 " ..w .‘-mvﬁ
ek Bt = -
Catarrds” ‘ "
QM. \
* L“. ~‘~-..
Uiady, Wlaml” % O* ".7‘
l’* 5“ ‘r* luﬂ\ wiin Dbl
RO Ao
Sanws Doas) el 2
A" «&‘ l,qo Ve
- “‘,J. *
AN ouwn.-a' & o O "“I
( &‘“ .tw‘. ’
'l "{3.- ('J'"” S”P-
[V W . X ,(', N '.‘ :". - Deer b dallon
>, » _ " -
o8 N aFTN \ LAY W EaA
, \+ \ ., 8 3 2‘ > 3
9 . Raersoud 3 <
\.o\u—nlft‘ﬁ" o “',;A : O are
MNP s T s T Jeede
B o | ‘.r b
Covsbomey M\ ] t,, Seaiaaini

. . . 1M L
£\ ? e
\:7 Y. :nu;o B,

C Mucizen Gl



Minimum Spanning Trees

* Given a weighted graph:

e Find a subset 1" of edges such that
* connects all vertices
* |s acyclic
e Jotal weight is minimal
w(T') = Z w(u,v) — o0
(u,v)ET

* Called a minimum weight spanning tree, but "weight" is
usually omitted



Minimum Spanning Trees

 Jwo greedy algorithms, Kruskal's and Prim's

e Use aloop invariant:
e Let A be the set of edges currently selected
e Invariant: A is a subset of some minimum spanning tree

e At each step of the algorithm: only add an edge (u, v) if
the invariant remains true after inserting the edge

* Such an edge is a safe edge



Minimum Spanning Trees

e Generic MST algorithm
1.A=0

2. While A is not a spanning tree
1.Find a safe edge
2.Add the safe edge to A
3.Return A



Minimum Spanning Trees

* A cutis a partition of the vertices of the graph
R
ﬁ*? 3 2
o §
6 {
o« [ N,
\ R
A &
DA
) 4 '
I
f

cut



Minimum Spanning Trees

e Edges can "cross the cut”
\\

\‘7/?\2
TRA
st

cut



Minimum Spanning Trees

 Edges are "light" if the cross the cut and no other edge
crossing the cut has a smaller weight

/R

\/;@»

f
0
!
Ilght edge cut



Minimum Spanning Trees

e A cut respects A if no edge of A crosses the cut
™

2 : A
VO
cut



Minimum Spanning Trees

e Theorem: Let A be a subset of £ included in some
minimum spanning tree, let (5, £ — §) be a cut respecting

A and let (i, v) be a light edge crossing the cut. Then this
edge is safe .



Minimum Spanning Trees

* Proof: \7‘/&

™ _> NSF
* We have a subgraph ,’ A /i{ \ A
1 Y

A that is part of a / U

minimum spanning A C 2 s N

tree T ' N }!\
cut

We have a minimum . /

weight crossing edge \\ /A_,

(u, v) crossing the cut i o

that separates A from This set A has two different
the rest of the graph connected components and

consists of red vertices
T is given by the fatter edges



Minimum Spanning Trees

e Case 1: The edge
s part of T

e Then there is
nothing to show
since adding the
edge still gives us a
subgraph that is
part of a minimum
spanning tree

cut



Minimum Spanning Trees

e Case 2: The edge is not part of T

Edges and vertices In
A are red

Edges in T are fat

This includes the red
edges

u and v are at the lower
left




Minimum Spanning Trees

* |n this case, we need to construct a new minimum weight
spanning tree

 Observe that there has to be an edge of T that crosses
the cut

e Because we can travel from every node to every node
iIn T and not all nodes are in A



Minimum Spanning Trees

 This edge in T that crosses the cut also has weight 2 in
our example, but for sure, it has weight > the weight of

(u, v) \
 There is another edge . 17
2

A
=72
5 3

2 T




Minimum Spanning Trees

 There has to be a path from u to v in T because 1'is a
spanning tree




Minimum Spanning Trees

* This path has to have at least one edge that crosses the
cut




Minimum Spanning Trees

e Take one of these edges and replace it with (&, v) in T

e Call the result 7"




Minimum Spanning Trees

e 77" still connects all of the vertices

e If a, b are two vertices that are connected in T by the deleted
edge:

e Can reroute through the edge (i, v)

e 7" has a weight changed by replacing the weight of (i, v) with
the weight of the deleted edge

e But because the weight of (i, v) is minimal among all edges
crossing the cut and the deleted edge also crossed the cut,

T" weight can only be lower

e Thus, A after adding the edge (u, v) fulfills still the invariant. ged



Kruskal's Algorithm

e Kruskal's algorithm works by joining subtrees
e Start out with all vertices being their own subtrees
e Thus, the cut is around all of the vertices
 While we have more than one subtree:

 \We select a cutting edge (i.e. between different
subtrees) with minimum weight

e This combines two subtrees



Kruskal's Algorithm




Kruskal's Algorithm




Kruskal's Algorithm




Kruskal's Algorithm




Kruskal's Algorithm




Kruskal's Algorithm




Kruskal's Algorithm

N
\\ .
. \
0/ "= L /‘& *
.7
/
e ~\. 3 2 \
/ 2 \‘\ ‘
[ )
0 / ° '
! ] 1 N
.
, 3 2 1, 5
' |
1 | - -
\ 3 ) * "
9
\ 5 4 — /
V4 — -
~ A P
~ _ e

L)



Kruskal's Algorithm




Kruskal's Algorithm

\\ .
- *w \
@ -\. ‘ ‘
R
V4 .\-\3 2 \
2 ® '
\
6 ‘\ \
N g
3 1 RN
\ ’/
3 2 3 5
1 .
3 1
5 4 /
~ _  as e W moa -’

N

I ‘
I
}
1
\

v

/7
(4
N



Kruskal's Algorithm

= . -
-
e
[ - )

7/?\ \
P 4 3 2
[ 4 5 ’
3 1 '
/ ; . N \
\ 1 /'
9 3 .
\ 5 4 /
) A /;

\

-

4
P 4
[ ] ”
"-9 -



Kruskal's Algorithm

 Because Kruskal's algorithm only adds safe edges, it
generates a minimum weight spanning tree

* How to organize it?
 We can order all of the edges by weight

 And then remove edges if they no longer are cutting
edges

 Best way:
e Maintain vertices in the same subtree in a set

 Determine quickly whether something is in a set



Kruskal's Algorithm

e Best solution known to humanity for the disjoint set
problem:

* have vertices organized by a directed edge to the "set

leader”
(@)
(o)
ta, (b}, {c}, id}, e}, 1/}, g}, 11}
(©
@) ©),



Kruskal's Algorithm

e |f we unite {a} and {b}, we have one point to the other

§O}
(b} @@ &

Y

a, by, {ci, 1d}, te}, if1, 18}, 1h)



Kruskal's Algorithm

e Same if we unite {g} and {/}

FORR =~ 0
© Yoy @ =

W

1a, by, ici, 1d}, (e}, (f 1,18, hi,



Kruskal's Algorithm

* |If we ask whether b and g are in two different
components, we follow the arrow and see whether the
leaders are the same or not.

‘@@7 @ﬁ’
@ &

1a, by, ici, 1d}, (e}, (f 1,18, hi,



Kruskal's Algorithm

 This can be optimized:

* There is the possibilities of having long chains

¥ &

wa,b,cdy, 1e}, if1, 18, 1,



Kruskal's Algorithm

* When we join, we connect one leader to the other leader

 Always make the larger set the head
(h)
- >
© o
O ()

wa,b,cdy, e, fY U 18, h, i,




Kruskal's Algorithm

e When we do a look up:

e \What is the head of c?

* Follow three links to get to 'h'



Kruskal's Algorithm

e When we do a look up:

* Reconnect the node and all we travel to directly to the
head



Kruskal's Algorithm

 Best possible case: Every node points directly to the head




Kruskal's Algorithm

* With this "disjoint union data structure”:

 Maintaining the disjoint set data structure costs
a(| V|) per operation where a is a function that grows
very slowly

e Kruskal's algorithm then runs in time O(| E |log(|E|))



Prim's Algorithm

e Prim's algorithm starts A at a single node and then adds
edges to it.

* Thus, the intermediate results are always connected

 Maintain a priority queue of all other vertices

e The vertices are ordered by distance to A



Prim's Algorithm

e We use the same example as before

* We can start at any node
O

=
< 27;1?%?\9@
VAVS



Prim's Algorithm

* The priority queue tells us which node to select

o After selecting edge and node, we need to update some
nodes

* Namely those in the adjacency list of the new node



Prim's Algorithm

. /9{‘”
Ay
Yavs'



Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm




Prim's Algorithm

 Because Prim's algorithm only selects safe edges, it
correctly calculates a minimum spanning tree

 The run-time of Prim's algorithm depends on the
implementation of the priority heap

* The best type is a Fibonacci heap

e In which case the runtime is O(|E| + V log(|V]))

 Or we can use a normal priority heap which gives us

e O(Elog(V))



