
Algorithms
Overview

Algorithms
• A generic recipe for computation

• Should work on broad category of computers

• E.g. Algorithms for quantum computers, biological
computers are / would be different

Standard Model of
Computing

• What is presented to the programmer:

• Computer reads instructions from memory

• Computer acts on instructions by changing memory
locations

• Example: addi x, 5

• Load x into accumulator, load 5 into a register, add
results, move accumulator results back into
memory where x is located

Standard Model of
Computing

• Modern systems pretend that instructions are executed
serially

• Compilers move instructions around without telling

• Compilers change instructions

• Most instructions are not atomic

• Caches allow two different threads to have different
views of the memory contents

• Memory system prioritizes reads over writes

Standard Model of
Computing

• Contract between system and programmer:

• System does what programmer wants, but in a different
faster way

• With a few exceptions, which makes multi-threaded
computing so challenging

Standard Model of
Computing

• Turns out that the optimizations of modern computing
systems do not create genuine new capabilities

• We can emulate a modern system using an old one

• We can even emulate a modern system using a model of
computing used in the 30s and 40s to model what
Mathematics can compute:

• Turing machine

DNA Computing
• DNA can store vast amounts of information in a very small

space.

• Store data (key-value pair) by encoding in DNA sub-
sequences

• To look up by key:

• Introduce the compliment of the key's substring affixed
to a magnetic bead

• Compliment bonds to DNA molecules with that key

• Extract these DNA molecules magnetically

• Sequence them for the result

Quantum Computing
• Uses quantum phenomena for computing

• Especially super-position and entanglement

• Can be analog or digital

• Digital quantum computing uses quantum gates

• Difficulty now is getting up the number of q-bits in a system

• Could be faster than classical computers

• Example: Shor's algorithm for factoring integers, Boson
sampling

• Will almost certainly force current cryptography to use much
larger keys

Algorithms
• Algorithms Implementation

• An algorithm can be implemented more or less
efficiently

• You can measure the speed of an implementation on a
given system fairly accurately

• You can derive the performance of an algorithm using a
computing model

≠

Algorithms
• Correctness

• Can we prove that the answer given by an algorithm is
correct?

• via Automated proof methods

• via human reasoning

• Often involves pseudo-code

Algorithms
• Performance

• Needs to be measured independently of
implementation

• Depends on the "instance size"

• Many problems in CS become proportionally more
difficult as they grow

• Use an "asymptotic" notation to capture behavior as
we "scale up"

Performance
• Computing uses resources

• Space: How much storage is needed

• Time: How many instructions are needed

• But it becomes more interesting:

• Some problems need to use storage (flash / disks)

• Storage is much slower

• Performance measurement: How many times does
the algorithm need to access storage

Performance
• Parallel / Multi-threaded performance

• Almost all computers have limited capability to execute
instructions in parallel

• E.g.: Develop data structures that are

• thread-safe

• lock-free (no locking of shared resources needed)

• wait-free (no waiting for a thread to access a data
structure)

Impossibility Results
• Can all problems be solved with a computer

• Depends on the type of computer, but:

• In a very generic computing model, there are
problems that cannot be solved

Impossibility Results
• Are there problems that can become prohibitively

expensive?

• Answer: Probably yes. There are classes of problems that
become intractable as they scale up

Outlay of Class
• Goal:

• You are to develop the capability to argue about the

• correctness

• performance

• of algorithms and data structures

• You are to develop the capability to invent simple
algorithms and data structures

• You are to develop the capability to implement
algorithms and data structures

Outlay of Class
• Contents:

• Finite automata and regular expressions

• Recurrence, asymptotic comparisons, and divide-and-
conquer problems

• Fast Data Structures

• Dynamic and greedy programming

• Graph Algorithms

• Limits of Computability

• Complexity Classes

