
Computational Model
Algorithms

Modeling Algorithms
• Algorithms can be implemented, but are not equal to an

implementation

• Performance is always concrete

• We can only measure what is there

• A given implementation of an algorithm

• On a given platform

• Under given circumstances

Modeling Algorithms
• Goal of algorithm design is not to invent well performing

algorithms

• Such a thing does not exist

• But to develop algorithms that work well under a large
variety of circumstances

RAM Model
• Classic Model

• RAM Model

• A machine consists of a CPU and RAM

• CPU has a large number of registers

• Unit costs for:

• Moving data between RAM and CPU

• Calculating between registers

RAM Model
• RAM Model is not accurate

• Operations do not cost the same

• Moving data from RAM to Cache (cache miss) can
take 200 nsec

• Simple operations take 20 nsec

RAM Model
• Operations are not sequential:

• Intel 486DX: 0.336 instructions per clock cycle at 33
MHz = 11.1 Million Instructions per Second (MIPS)

• AMD Ryzen 7 1800X: 84.6 instructions per clock
cycle at 3.6 GHz = 304,510 MIPS

• Now: many instructions run in parallel and execution
overlaps

RAM Model
• Data and instructions are cached in several cache levels

• Caches belong exclusively to a chip

• Core has own L1 / L2 caches

• Up till now:

• Caches are coherent through invalidation

• If one thread changes a cache content, other
threads will not see the old content

• Cache lines are invalidated and a read results in a
cache miss

RAM Model
• Effectiveness of caches depends on the instructions and

data

• Modern algorithm design:

• Find cache aware / cache oblivious algorithms

• Cache aware: Algorithm optimized depending on
cache parameters

• Cache oblivious: Algorithm does not need cache
parameters in order to make efficient use of caches

RAM Model
• Threading

• Many tasks can be performed in parallel

• Processes can be broken into threads

• Algorithms need to be thread-safe

• Correct even when execution is split over several
threads

• Usual tool is locking

• But locking can be detrimental to performance

• Modern algorithms can be lock-free and threadsafe

RAM Model
• Branch prediction and speculative execution

• Because cache misses are long

• Processor will executes statements after a
conditional statement

• At the danger of these statements not being
usable

Branch Prediction

Block

if X go to A else go to B

 Block A

 Block B

Code Branch Prediction

Block

if X go to A else go to B

 Block B

Execute B if X is predicted to be false

Block

if X go to A else go to B

 Block A

 Block B

Speculative Execution

Create two streams executing A and B
in parallel, knowing that one stream’s
result are thrown out

RAM Model
• Too many if statements and branch prediction and

speculative execution become ineffective

• Good algorithms can be designed that minimize branches

RAM Model
• Large Data Sets

• RAM is limited and expensive

• This might change soon with Phase Change
Memories as RAM substitutes

• Some data does not fit into RAM

• Performance becomes dominated by moving data
from storage into RAM and back

• Modern algorithms can be designed to work well with
certain storage systems

RAM Model
• Distributed Computing

• Many tasks are to massive to work on a single machine

• Distribute computation over many nodes

• Performance can now be dominated by the costs of
moving data between machines and / or coordinating
between them

• Distributed Algorithms

RAM Model
• Parallel Computation

• GPU have millions of simple processing elements

• Modern CUDA algorithms will make use of
parallelization

• Successors to earlier parallel algorithms

RAM Model
• Despite it all:

• RAM model has allowed us to develop a set of efficient
algorithms

• To which we still add

• However: Software engineers and algorithm designers
need to be aware of architecture

RAM Model
• Calculating timings

• Can depend on data

• Example: Sorting algorithm can run much faster on
almost sorted data (or much worse)

• Can calculate maximum time (pessimistic)

• Can calculate expected time

• Needs to make assumption on probabilities

• Can calculate minimum time (optimistic)

• Usually a useless measure

RAM Model
• Probabilistic algorithms

• Algorithms can make decisions based on probabilities

• Useful in case there is an "adversary" who gets to
select data

• Example:

• Cryptography:

• Can always break cryptography by guessing keys

• But the probability of breaking cryptography with
reasonable high probability in a limited amount of
time should be very small

