Analysis of Euclidean
Algorithm

Algorithms
Thomas Schwarz, SJ

Greatest Common Divisor

e Given two numbers a,b € N:
e adividesb al|b:<—=dxeN: b=ax
* Divisors are smaller than the dividend
ca|lb=a<lb
e risacommon divisorofaand biff r|aAr|b
e gcd(a,b) =max{r:r|aAnr| b}
e Always exists because the set is finite

* Any finite subset of the natural numbers has a maximum

Greatest Common Divisor

e Lemma 1: Forall numbers a,b € N:
gcd(a, b) = ged(b, a)

* Proof: The set of common divisors does not depend on the
order in which a and b are given:

e {r:r|lanr|b}={r:r|bAr| a} because the
logical and operator is commutative

Hence: gcd(a,b) = max{r:r|aAr| b}
=max{r:r|bAr]|a}

= gecd(b, a)

Greatest Common Divisor

e Lemma?2: Ifa € Nanda | b then gcd(a, b) = a.

* Proof:
e ais the largest divisor of itself.
e ais also a divisor of b by assumption

e Hence a is the largest element in the set of common
divisors {r:r|laAnr|b}.

e This means that
a=max{r:r|aAr| b} =gcd(a,b)

Greatest Common Divisor

e Lemma3:If a =c (mod b) then gcd(a, b) = gcd(c, b)

e Proof:
ea=c (mod b)) = dr,s,teNy:a=rb+tAc=sb+tN0Lt<Db
e Weshowthat{r:r|laAr|b}={r:r|cAr|b}

e Assume that d € N is in the left side. We want to show that it is also in
the right side. For this we need to show that d also divides c.

e What do we know: There exists x, y € N, such that
e b=xd because d divides b
e a=yd because d divides a

e a=rb+t,c=sb+t0<t<b

Greatest Common Divisor

* Proof (continued)
C = C—a-+a
= ((sb+t)— (rb+1)) +a
— (s —r)b+a
— (s —r)zd + yd
= (s —r)xr+y)d

Greatest Common Divisor

* Proof: (cont)

* Now we want to show that all elements on the right
sideof {r:r|laAr|b}={r:r|cAr|b}arein
the left side.

e However, since our assumptions are symmetric in a
and ¢, the same proof applies.

Euclidean Algorithm

* |nformal Version:
e To compute gcd(a, b) put the larger number of a and b on the left

e Then divide a by b with remainder r (a = bx + 1)

e Ifr=0,then b | aandgcd(a,b) =0>b.
e Otherwise:
e Noticethatr =a (mod b).
e Therefore gcd(a, b) = gcd(r, b) = gcd(b, r) by the Lemma

e Continue until the remainder becomes 0

Euclidean Algorithm

e gcd(1043, 4321)

e = gcd(4321, 1043)

e =gcd(1043, 149)

e =149 because 1043 % 149 = 0.
* There is an interesting extension:

e 4321=4"1043+149, ergo 149 = 4321-4*1043, a linear
combination of 4321 and 1043

Euclidean Algorithm

gcd(198, 168)

- gcd(168, 30)

= gcd

30, 18)

= gcd(18,12)

:gC
=6

(
(
(
d(

12,6)

198-168=30

18 =168 - 5*30
=168-5(198-168)=6"168-5"198

12=30-18 = 198-168-6"168+5"198 =
6°198-7"168

6 = 18-12 = -5*198+6*168-6"198+7*168 =
-11*198 + 13*168

GCD is a linear combination of the two
parameters!

Euclidean Algorithm

e Pseudo-code

det gcd(a, b):
1f b==0:
return a
else:
return gcd (b, asb)

Euclidean Algorithm

e How do we prove the correctness of an algorithm?
e Especially if it contains a loop
e Usually, need to use induction

e Sometimes using a loop invariant

S eaiies. 30, ® Inthis case: gcd(vari,var2) does not change

gcd (30, 18) between between calls
gcd (18,12)
(
(6

gcd (12, 6) .
= gcd (6,0) e That is Lemma 3!

 End if the algorithm ever ends, it prints out the
correct value by Lemma 1.

Euclidean Algorithm

* How do we prove the correctness of the algorithm?
* |t is possible that an algorithm will never stop
e (on some inputs, or on all inputs)

* |n our case, the smaller of the variables becomes
strictly smaller

e with the exception of the first step

e Thus, we will run out of variables for our recursive calls
sooner or later

e Algorithm will eventually return the correct number

Euclidean Algorithm

 Performance
e Obviously, proportional to the number of recursive calls
e (Given two random inputs:
e Can stop in one iteration
e |f second variable divides the first
e QOr can stop after many

e |n a case like this: look for the worst case scenario

Euclidean Algorithm

* Theorem: If gcd(a,b) makes N recursive callsanda >Db
thena 2 fy,p,and b 2 fy,

Euclidean Algorithm

def gcd(a, b):
* Proof: if b==0:

return a

* By induction else:
return gcd (b, a%b)

e Base case: N = 1:

e Inthiscase b # 0,hence b > 1 = f,

e Inthiscasea > b,soa>b=1=—=a>2=/,

Euclidean Algorlthm

e |nduction step

* |nduction hypothesis:

def gcd(a,
1if b==O
return a
else:
return gcd (b, asb)

o If gcd has N recursive calls then a > fy, -, and

e If gcd has N + 1 recursive calls, then a > fy. 3

and b > fy.»

Euclidean Algorlthm

def gcd(a,
1f b=
return a

* The first step calls gcd(b,a%b) =ses t d (b o)
return gc y Ao

 Assume that gcd(a,b) makes N+1 calls.

* This call calls the function recursively N times

* Thus, by Induction Hypothesis

e b>fy,anda%b > fy.,

e By division with remindera =rb+a% bwithO <a%b < b

e Becausea > b we haver > 1.

o Therefore:a > b+ a%b > fy,» + fyi1 = fyss-

» We already know that b > fy.,

Euclidean Algorlthm

def gcd(a, b)

_ 1f b==0:
e (Can find a closed form of Fibonacci return a

else:

1 +_\/Q§ return gcd (b, a%b)

« O = ~ 1.68

¢ b ZfN+2 > oY

e This implies that log4(b) > N — 1 and N = O(log b)

Loop Invariants

* Recursion usually demands induction proofs to assert
properties of an algorithm

 For loops, use loop invariant:
* A property that is true before the loop starts
* A property that remains true after each loop iteration

 And is therefore true after the loop terminates

Loop Invariants

 Working with loop invariants:
* Need to come up with a loop invariant

e Prove that it is true before the loop starts (induction
base)

e Prove that it remains true after each iteration of the
loop

Loop Invariants

e Trivial Example:

e Small C-program

extern int c;
int x = ¢, y = 0;
while (x>=0) :
X==;
y++;
print (y)

Loop Invariants

e Step 1: Guessing a loop invariant

extern int c;
int x = ¢, yv = 0;
while (x>=0):
X==;
y++;
print (y)

* Needs toinvolve x, y, C

e xX+y=c

Loop Invariants

e Step 2:
e Show that it is true before the loop starts

e Simple: before the loop starts, we have x = ¢,y = 0
thereforex + y = ¢

Loop Invariants

e Step 3: Show that the truth does not change after one
iteration

e Induction step: Assume x;, + y, = ¢ before the loop
iteration

o After the iteration, we havex, =x, — 1,y, =y, + 1.
 This implies

e X, +y, =0 -D+Oy,+D)=x,+y,-1+1=x+y,=c

Loop Invariants

e Step 4: Evaluate with the loop invariant

e When the loop is terminated, x = 0.

e (Question: why do we now that the loop terminates?)

e Therefore, the value of y is
y=x+y—x=c—-—0=c

e Thus, the function prints out the value of c.

