
Backtracking I 
Backtracking is a very simple method, and sometimes effective method to solve combinatorial 
problems that avoids full enumeration and relies on recursion.


Abstractly, we want to solve a problem that can be thought of as finding a path subject to 
various constraints. Whenever the solver encounters a dead-end, the solver backtracks. 


It is probably easiest to understand backtracking using examples. A first example is finding a 
magic square.  A magic square is a 3-by-3 square filled with the numbers between 1 and 9 
(ends included) such that the sum the numbers of each row and each column as well as the 
sum of the numbers in the two diagonals are equal. (Since the sum of the row sums is equal to 
the sum of the numbers from 1 to 9, i.e. 45, the sums have to be equal to 15). Figure 1 gives 
one example of a magic square.


Fig 1:  A magic square and the conditions on it. 


Backtracking starts in one random, empty cell by guessing a number among 
the available numbers. 





Then the solver calls itself again finding another cell to fill in. So far so good, 
this is a good partial solution. 





After filling in this random number, we have a problem.  The square is no 
longer a valid partial solution, it is infeasible. 





So, we undo what we did and backtrack and get to the previous state.
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(1) The numbers 1-9 are all used, exactly once

(2) The sum of the numbers in each row is 15

(3) The sum of the numbers in each column is 15

(4) The sum of the numbers in the two long 

diagonals is 15
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After possibly some repetition, we have guessed a number that makes the 
solution partially valid.





We then continue assigning.  Let's say we reached this state:





Whatever we assign to the lower left corner, will violate a constraint.  The only 
x that does not lead to a violation that the sum of the first column is 15 is 4, 
but that violates the condition that all numbers are different. This means that 
there is no solution from the previous state and we roll back. 


So, in this case, the solver having tried all possibilities, decides that the 
position on the right is infeasible.  





This implies that the previous state is also infeasible.   





Therefore, the solver backtracks one more step and assigns a new value to 
the center cell, trying out whether this one will work.               


To be able to backtrack, we need to remember our past path, and for this we can use a stack.  
However, computing already uses stacks, namely the call stack.  A programmer can implement 
backtracking by just using recursion judiciously. 


There are three components of a backtracking program, or more precisely, three aspects of a 
problem that can be solved with backtracking:

1. Can we solve the problem by iteratively developing partial solutions?

2. Can we verify if the partial solution is invalid?

3. Can we verify if the problem is complete.


In the case of the magic square, we have partial solutions that fill in some but not all cells. A 
partial solution is invalid if it uses numbers outside of the range and re-uses at least one of the 
numbers. A solution is complete, if all the cells are filled in. 
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In this case, we can build a backtracking program using the following scheme:


def solver(board): 
 If complete return board 
  Find next step 
 For all possible ways to take the next step: 
  take step this way 
  if we are in a valid partial state: 
   result = solver(board) 
   if result is complete: 
    return result 
   undo the step 
 Return board 

When we are in a certain state, we try out all possible positions. If we find a feasible position, 
we recursively continue from this position in line (7). Otherwise, we undo. 

	  

Implementation: 
Our underlying data structure is a two-dimension core-Python matrix. (Aficionados of NumPy 
will role their eyes.) We model a non-filled in cell by a 0 value.


matrix = [ [0 for i in range(3)] for j in range(3) ] 

We check whether we are done by testing if there are still zeroes in the matrix.


def is_complete(board): 
    for i in range(3): 
        for j in range(3): 
            if board[i][j] == 0: 
                return False 
    return True 

Finding the next possible step to take involves finding a free cell. 


def find_first_free_cell(board): 
    for i in range(3): 
        for j in range(3): 
            if board[i][j] == 0: 
                return i, j 
     

To check for feasibility, we check first whether the numbers assigned are all different.  Then we 
check whether the sums of completely filled in rows, columns, and diagonals match. In this 
code fragment, I left in the commented print statements that I used for debugging as a 
reminder that you need to check each and every method. 




def is_valid(board): 
    numbers = [] 
    for i in range(3): 
        for j in range(3): 
            if board[i][j] != 0: 
                if board[i][j] in numbers: 
                    #print('numbers not different') 
                    return False 
                else: 
                    numbers.append(board[i][j]) 
    #all numbers are different 
    for i in range(3): 
        if board[i][0] and board[i][1] and board[i][2]: 
            if board[i][0]+board[i][1]+board[i][2]!=15: 
                #print('rows') 
                return False 
    for j in range(3): 
        if board[0][j] and board[1][j] and board[2][j]: 
            if board[0][j]+board[1][j]+board[2][j] !=15: 
                #print('cols') 
                return False 
    if board[0][0] and board[1][1] and board[2][2]: 
        if board[0][0]+board[1][1]+board[2][2] != 15: 
            #print('main diagonal') 
            return False 
    if board[0][2] and board[1][1] and board[2][0]: 
        if board[0][2]+board[1][1]+board[2][0] != 15: 
            #print('opp diagonal') 
            return False 
    return True 

  Finally, we implement the blue-print:  


def back_track(matrix): 
    if is_complete(matrix): 
        return matrix 
    i, j = find_first_free_cell(matrix) 
    for num in range(1,9+1): 
        matrix[i][j] = num 
        if is_valid(matrix): 
            result = back_track(matrix) 
            if is_complete(result): 
                return result 



        matrix[i][j] = 0 
    return matrix 
     
If you look at this code, it is very in-efficient. Certain conditions are going to be checked over 
and over again when we can infer heir veracity. Thus, this code is not the fastest. But because 
we only look at  possible positions and exclude many of them, it still runs almost 
instantaneously.  In real life, you would spend some time improving the performance of the 
algorithm. This is not the case with your task, which is big enough that you will notice the 
execution time.


Your task 
You are to use the pattern for backtracking in order to find simple Balanced Incomplete Block 
Design (BIBD). BIBD were originally invented in the 1930s in order to determine the effect of 
several causes (such as fertilizing, crop rotation, farming method, irrigation etc.) on farm yield.  
Ideally, we would want to evaluate the influence of all possible combinations but this quickly 
becomes impossible. Since then, BIBD have started a Mathematical Community  - Design 
Theory -, but there results have also been used in Computer Science, for example in the layout 
of disk arrays. Luckily for you, you do not need to know any of this.


A BIBD consists of a set of blocks that contain symbols. The blocks have all the same length 
and no symbol is repeated in a block. Each pair of symbols appears together in the same 
number of blocks. A block is characterized by:


1.  — The number of different symbols. We will write the symbols as numbers .

2.  — The number of blocks.

3.  — The number of points in a block.

4.  — The number of blocks that contain a given pair of blocks. 

5.  — The number of blocks that contain a given point.


Here is an example BIBD:


1234, 1235, 1267, 1368, 1456, 1478, 1578, 2378, 2457, 2468, 2568, 3458, 
3467, 3567

This BIBD has , , , , and .  BIBD are characterized in fact by the 
parameters , but that involves a bit of Mathematics. 


You are to use backtracking in order to find a BIBD with ten blocks of length three on six 
elements. Each element has to be five times in a block. Any pair of elements will appear 
in two blocks together. 

You have to use the schema laid out for magic squares.  However, this is going to take a long 
time to execute.  So, we use one heuristic, namely that we can add elements to blocks in 
increasing order. 
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In backtrack, you have to find the first free spot.  This is the first block with a zero and an index 
into the block.  Then you only try numbers that are larger than the maximum number of 
elements already in the block.


nr_blocks = 10 
pts_per_block = 3 
nr_elements = 6 
distinct = 2 
blks_with_point = 5 

blocks = [ pts_per_block*[0] for _ in range(nr_blocks) ] 

def bibd(blocks): 
    if is_complete(blocks): 
        return blocks 
    blk, i = find_first_empty(blocks)  
    #bl is a block, i an index, this is the first block with a 0 
    for num in range(max(blk)+1,nr_elements+1): 
        %%%%%%%%%%%%% 
        %%%%%%%%%%%%%%%%%%%%%: 
            %%%%%%%%%%%%%%%%%%%%% 
            %%%%%%%%%%%%%%%%%%%%: 
                %%%%%%%%%%%%%%%%%% 
        %%%%%%%%%%% 
    %%%%%%%%%%%%% 

Extra credit (but I doubt you can do it) equal to 10% on the midterm / final:


Find the example BIBD with , , , , and  via back-tracking. You 
will need to implement further heuristics into the basic backtracking routine and make the test 
really efficient in order to use backtracking. If you think you can do it, make sure you are not 
using your computer for the foresee-able future and that you are not running on battery. 


Deliverable: 
Your complete code. 


The output of your code.


The execution time and the type and rating of your processor (e.g. I5 at 2.2 GHz). 

v = 8 b = 14 k = 4 λ = 3 r = 7
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