
Backtracking Again
Thomas Schwarz, SJ

Generic Backtracking
• Backtracking improves on Brute-Force Enumeration

• Where solution is can be generated recursively

• Gain traction by avoiding generating potential solutions if
we can determine that they will not work

Generic Backtracking
• Three conditions

• Solve by iteratively generating partial solutions

• Determine whether a partial solution is invalid

• Otherwise, it will just be complete enumeration

• Determine whether a solution is complete

Generic Backtracking
• Generic solution: Uses recursive calls and thereby OS

stack

• Need to fill in the problems

def solver(board):
 If complete return board
 Find next step
 For all possible ways to take the next step:
 take step this way
 if we are in a valid partial state:
 result = solver(board)
 if result is complete: return result
 undo the step
 Return board

Gray Codes
• Ordering of all integers of certain bit-length

• Each number differs from predecessor by one bit

• Example length three:
0: 000
1: 001
3: 011
2: 010
6: 110
7: 111
5: 101
4: 100

Gray Codes
• Implement Gray codes as a list, starting with [0]

• To implement scheme

• Need to:

• Find next possible element:

• Flipping a bit: Exclusive-Oring with a power of two

• Example

• 18 = b10010

• 18^8 = b11010 = 26

Gray Codes
• To implement scheme:

• Find all choices:

• for b in [1,2,4,8,16]:
 x = lista[-1]^b

Gray Codes
• Implementing scheme

• Determine whether a solution is feasible:

• Check that list contains different elements

• Only need to check the last element since the
previous ones already fulfill

• if x not in lista

Gray Codes
• To implement scheme:

• Determine when we are done:

• By construction:

• subsequent integers differ in one bit

• all integers are different

• Therefore:

• Do we have elements?2n

if len(lista) == 16:

Gray Codes
• Build a new partial solution from previous partial solution

and a choice?

• Choice is a new number that differs in one bit from last
element in list

• Append new number to list

for b in [1,2,4,8]:
 x = lista[-1]^b
 if x not in lista:
 lista.append(x)

Gray Codes
• Undo an unsuccessful expansion:

• Just remove recently appended number from list

• Easiest with pop

• lista.pop()

Gray Codes
• Putting things together:
def solver(lista):
 if len(lista)==1024: #done?
 return lista
 for b in [1,2,4,8,16,32,64,128,256,512]:
 #get all possible choices
 x = lista[-1]^b
 if x not in lista: #is feasible?
 lista.append(x) #get new partial
 result = solver(lista) #does it work?
 if result and len(result)==1024:
 return result #worked, we are done
 lista.pop() #did not work, try next

