
Practice Midterm Solution
Finite Automaton:

1. Since there are two transitions from State A on 1 (on to itself, on to B), the automaton is
non-deterministic.

2. The states of the deterministic automaton are subsets of the set of states, but we only
create the ones that we actually need.

The final / accepting states are the ones with in them and is still the starting state.

You can surmise that an optimization would merge the two final states.

Sorting Networks:

1. The number of comparisons needed to find the maximum of n values is .

2. Divide the array into groups of eight (linear work). Then determine the maxima of each

group (time) and put them into an array. Then apply the algorithm recursively on the
array of maxima.

3.

4. Therefore, we compare the linear function with . We are in case 3 with

an between 0 and 1. Since , regularity is given. Thus, .

State on 0 on 1

{A} {A} {A,B}

{A,B} {A} {A,B,C}

{A,B,C} {A,C} {A,B,C}

{A,C} {A,C} {A,B,C}

C {A}

n − 1

∼ n /8

T (n) = T (n /8) + Cn
log8 1 = 0. n0 = 1

ϵ an /8 <
1
2

n T (n) = Θ(n)

{A} {A,B} {A,B,C}

{A,C}

Start

0

1

0

1

0
1

1

0

(Comment: this is no surprise, what is more interesting is to count the number of steps

using the sorting network. These are .)

Recursive Algorithm

The recursive calls operate on arrays of size and there are five of them. The rest of the

work is presumably constant. This gives . By the master theorem, we
have to calculate and compare with . Since

, we are in case 1 and have .

B-Tree
Before the delete operation, the B-tree needs to have three nodes and therefore at least three
records. After the deletion, the B-tree records need to fit into a single node, and therefore there
are at most two records. Any B-tree with three records will do.

Before deletion:

If we delete any record, but let's pick 'orc', we swap 'orc' with its predecessor, and delete from
there. This gives a node with underflow:

Obviously, a rotate is impossible, so we have to merge:

Cn + C
n
8

+ C
n
82

+ … =
8
7

C

⌈
n
3

⌉

T (n) = 5T (n /3) + C
log3(5) = 1.4649735207179269 = l nl C

C ∈ O(nl−ϵ) T (n) = Θ(nl)

orc

bug yak

bug

yak

bug, yak

Linear Hashing:
A linear hash table with buckets has split pointer 2 and level 3. We insert the
record with key hash 5 into Bucket , with key hash 6 into Bucket , with key
hash 7 into Bucket , with key hash 8 into Bucket 8, with key hash 9 into Bucket 9
and with key hash 10 into Bucket

10 = 23 + 2
5 % 8 = 5 6 % 8

7 % 8 = 7
10 % 16 = 10.

	Finite Automaton:
	Sorting Networks:
	Recursive Algorithm
	B-Tree
	Linear Hashing:

