Practice Midterm Solution
Finite Automaton:

1. Since there are two transitions from State A on 1 (on to itself, on to B), the automaton is
non-deterministic.

2. The states of the deterministic automaton are subsets of the set of states, but we only
create the ones that we actually need.

State on0 on1
{A} {A} {A.B}
{A,B} {A} {A,B,C}

{AB,C} {AC} {A,B,C}
{A,C} {A,C} {A,B,C}

The final / accepting states are the ones with C in them and {A} is still the starting state.

S
GroD

—_

0

You can surmise that an optimization would merge the two final states.

Sorting Networks:

1. The number of comparisons needed to find the maximum of n valuesisn — 1.

2. Divide the array into groups of eight (linear work). Then determine the maxima of each

group (time ~ n/8) and put them into an array. Then apply the algorithm recursively on the
array of maxima.

3. Tm)=Tn/8)+Cn
4. logg 1 = 0. Therefore, we compare the linear function with nY = 1. We are in case 3 with

1
an € between 0 and 1. Since an/8 < En regularity is given. Thus, T (n) = O(n).

(Comment: this is no surprise, what is more interesting is to count the number of steps

n n 8
using the sorting network. These are Cn + C§ + C§ +...= 7C.)

Recursive Algorithm

n
The recursive calls operate on arrays of size [51 and there are five of them. The rest of the

work is presumably constant. This gives T'(n) = 5T (n/3) + C. By the master theorem, we
have to calculate logs(5) = 1.4649735207179269 = [and compare n' with C. Since
C € O(n"°), we are in case 1 and have T'(n) = O(n').

B-Tree

Before the delete operation, the B-tree needs to have three nodes and therefore at least three
records. After the deletion, the B-tree records need to fit into a single node, and therefore there
are at most two records. Any B-tree with three records will do.

Before deletion:

If we delete any record, but let's pick 'orc’, we swap 'orc' with its predecessor, and delete from
there. This gives a node with underflow:

Obviously, a rotate is impossible, so we have to merge:

Linear Hashing:

A linear hash table with 10 = 23 + 2 buckets has split pointer 2 and level 3. We insert the
record with key hash 5 into Bucket 5 % 8 = 5, with key hash 6 into Bucket 6 % 8, with key
hash 7 into Bucket 7 % 8 = 7, with key hash 8 into Bucket 8, with key hash 9 into Bucket 9
and with key hash 10 into Bucket 10 % 16 = 10.

	Finite Automaton:
	Sorting Networks:
	Recursive Algorithm
	B-Tree
	Linear Hashing:

