Midterm Preparation

NFA to DFA

Given the following NFA, determine the smallest string starting with a 0 and containing a 1 that can be accepted.

Divide and Conquer Algorithm

We are given a (very large) array of numbers containing the prices of a given stock. To test an Al algorithm for trading, we want to find the best interval for investing, were we buy the stock cheap and sell for a high prize. Let's call this the best run. Mathematically, we want to find $\max(\{a_i - a_i | i < j\})$.

Give a divide and conquer algorithm to calculate the longest run. Hint: What are the possibilities for the longest run as regards to dividing the array into two halves?

Solutions

NFA to DFA

Any string accepted has to move the current state from A to F and this involves at least three steps. This means that each accepted string has at least three letters. The string "001" is accepted and therefore minimal.

Divide and Conquer Algorithm

We divide the array into two halves, left and right. We then argue as follows: The best run could be (1) in left, could be (2) in right, or (3) it spans both, in which case it is between the minimum

```
def longest_run(array):
if len(array) == 1:
    return 0, array[0], array[0]
else:
    left = array[:len(array)//2]
    right = array[len(array)//2:]
    lbest, lmin, lmax = longest_run(left)
    rbest, rmin, rmax = longest_run(right)
    best = max(lbest, rbest, rmax-lmin)
    mymin = min(lmin, rmin)
    mymax = max(lmax, rmax)
    return best, mymin, mymax
```

on the left and the maximum on the right. For the recursive call, we return the value of the best run, the minimum, and the maximum. A Python implementation is given above.