Practice Midterm Solution

Finite Automaton:

1. Since there are two transitions from State A on 1 (on to itself, on to B), the automaton is non-deterministic.
2. The states of the deterministic automaton are subsets of the set of states, but we only create the ones that we actually need.

State	on 0	on $\mathbf{1}$
$\{A\}$	$\{A\}$	$\{A, B\}$
$\{A, B\}$	$\{A\}$	$\{A, B, C\}$
$\{A, B, C\}$	$\{A, C\}$	$\{A, B, C\}$
$\{A, C\}$	$\{A, C\}$	$\{A, B, C\}$

The final / accepting states are the ones with C in them and $\{A\}$ is still the starting state.

You can surmise that an optimization would merge the two final states.

Sorting Networks:

1. The number of comparisons needed to find the maximum of n values is $n-1$.
2. Divide the array into groups of eight (linear work). Then determine the maxima of each group (time $\sim n / 8$) and put them into an array. Then apply the algorithm recursively on the array of maxima.
3. $T(n)=T(n / 8)+C n$
4. $\log _{8} 1=0$. Therefore, we compare the linear function with $n^{0}=1$. We are in case 3 with an ϵ between 0 and 1 . Since $a n / 8<\frac{1}{2} n$, regularity is given. Thus, $T(n)=\Theta(n)$.
(Comment: this is no surprise, what is more interesting is to count the number of steps using the sorting network. These are $C n+C \frac{n}{8}+C \frac{n}{8^{2}}+\ldots=\frac{8}{7} C$.)

Recursive Algorithm

The recursive calls operate on arrays of size $\left\lceil\frac{n}{3}\right\rceil$ and there are five of them. The rest of the work is presumably constant. This gives $T(n)=5 T(n / 3)+C$. By the master theorem, we have to calculate $\log _{3}(5)=1.4649735207179269=l$ and compare n^{l} with C. Since $C \in O\left(n^{l-\epsilon}\right)$, we are in case 1 and have $T(n)=\Theta\left(n^{l}\right)$.

B-Tree

Before the delete operation, the B-tree needs to have three nodes and therefore at least three records. After the deletion, the B-tree records need to fit into a single node, and therefore there are at most two records. Any B-tree with three records will do.

Before deletion:

If we delete any record, but let's pick 'orc', we swap 'orc' with its predecessor, and delete from there. This gives a node with underflow:

Obviously, a rotate is impossible, so we have to merge:

Linear Hashing:

A linear hash table with $10=2^{3}+2$ buckets has split pointer 2 and level 3 . We insert the record with key hash 5 into Bucket $5 \% 8=5$, with key hash 6 into Bucket $6 \% 8$, with key hash 7 into Bucket $7 \% 8=7$, with key hash 8 into Bucket 8 , with key hash 9 into Bucket 9 and with key hash 10 into Bucket $10 \% 16=10$.

