Applications of Depth First Search

Thomas Schwarz, SJ

Topological Sort

- Recall topological sort
- We are given a directed graph
- Want to order all vertices such that no edge goes from a higher-numbered vertex to a lower-numbered vertex
- If this is impossible, then we have a cycle
- So, our algorithm also detects whether there is a cycle in a directed graph
- We use DFS for an even better algorithm

Topological Sort

- Run DFS on all nodes
- Order nodes according to finish time in descending order

Topological Sort

- Start in A
- Order adjacency lists alphabetically

```
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D
```


Topological Sort

- Visit B

```
A: B,C
B: H
C: E,F,H
D: A, G
E: F
F: I
G: C
H:
I: D
```


visit(B)
visit(A)

Topological Sort

- Visit H


```
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D
```

visit(H)
visit(B)
visit(A)

Topological Sort

- Visit E


```
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D
```

visit(E)
visit(H)
visit(B)
visit(A)

Topological Sort

- Visit F


```
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D
```

visit(F)
visit(E)
visit(H)
visit(B)
visit(A)

Topological Sort

- Visit I


```
A: B,C
B: H
C: E,F,H
D: A,G
E: F
F: I
G: C
H:
I: D
```

```
visit(I)
visit(F)
visit(E)
visit(H)
visit(B)
visit(A)
```


Topological Sort

- Visit D


```
A: B,C
B: H
C: E,F,H
D: A, G
E: F
F: I
G: C
H:
I: D
```

```
visit(D)
visit(I)
visit(F)
visit(E)
visit(H)
visit(B)
visit(A)
```


Topological Sort

- At this point:
- The adjacency list of D starts with A
- A is gray
- This edge becomes a back edge!
- And shows that there is a cycle

$A: B, C$
$B: H$
$C: E, F, H$
$D: A, G$
$E:$
F
$F:$
I
$G:$
H
H

$$
\begin{aligned}
& \text { visit(D) } \\
& \text { visit(I) } \\
& \text { visit(F) } \\
& \text { visit(E) } \\
& \text { visit(H) } \\
& \text { visit(B) } \\
& \text { visit(A) }
\end{aligned}
$$

Topological Sort

- A different example
- Start in A


```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- A different example
- Start in A

[^0]visit(A)

Topological Sort

- Visit B

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


[^1]
Topological Sort

- Visit H

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
    H: F
```


Topological Sort

- Visit F

```
A: B,D,G
B: H
    C: F
    D: B,H
    E: C,D,G
    F:
    G: B
    H: F
```


Topological Sort

- Finish F
- Push F at front: [F]

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Finish H
- Push H at front: [H, F]

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Finish B
- Push B at front: $[\mathrm{B}, \mathrm{H}, \mathrm{F}]$

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Go back to visit A
- $[B, H, F]$


```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Visit D
- $[B, H, F]$


```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Visit C
- $[B, H, F]$

A: B, D, G
B: H
C: F
D: B, H
E: C, D, G
F:
G: B
H: F

$$
\begin{aligned}
& \text { visit(C) } \\
& \text { visit(D) } \\
& \text { visit(A) }
\end{aligned}
$$

Topological Sort

- Finish C
- [C, B,H, F]

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
    H: F
```


$$
\begin{aligned}
& \text { visit(C) } \\
& \text { visit(D) } \\
& \text { visit(A) }
\end{aligned}
$$

Topological Sort

- Go back and finish D
- [D, C, B, H, F]

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


$$
\begin{aligned}
& \text { visit(D) } \\
& \text { visit(A) }
\end{aligned}
$$

Topological Sort

- We are back to visit A
- Next node is G
- [D, C, B, H, F]

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Visit G
- [D, C, B, H, F]


```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Finish G
- [G, D, C, B, H, F]


```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Go back to A
- [G, D, C, B, H, F]
$A: B, D, G$
B: H
C: F
D: B, H
E: C, D, G
F:
G: B
H: F

visit(A)

Topological Sort

- Finish A
- [A, G, D, C, B, H, F]


```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Done with visit(A)
- [A, G, D, C, B, H, F]

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- One white node left: E
- Visit E
- [A, G, D, C, B, H, F]

```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


visit(E)

Topological Sort

- Finish E
- [E, A, G, D, C, B, H, F]


```
A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F
```


Topological Sort

- Key observation from the examples:
- We have a cycle if we ever try to visit a gray node

Topological Sort

- Lemma: A directed graph $G=(V, E)$ is acyclic if and only if a DFS of G yields no back edges

Topological Sort

- Proof: " $=$ "
- If DFS produces a back-edge (v, u) then u is an ancestor of v
- There is a path from u to v in the tree
- The edge (v, u) closes a cycle
- from u to v back to u

Topological Sort

- Proof: " \Leftarrow "
- Suppose G has a cycle
- Let u be the first vertex in the cycle to be discovered

Topological Sort

- All other vertices in the cycle are white and there is a white-path to the node v just in front of u

Topological Sort

- By the white-path theorem:
- We will discover v from u
- (Though not necessarily through the cycle since there might be more cycles)
- Thus, (v, u) is a back edge

Topological Sort

- Theorem: DFS gives a topological sort or discovers a cycle
- Proof:
- Need to show:
- If DFS does not discover a cycle, then for each edge (u, v), we have $u . f>v . f$

Topological Sort

- Proof:
- At the time that we are first looking at (u, v) :
- v cannot be gray, because then we would have a back-edge

Topological Sort

- At the time that we are first looking at (u, v) :
- If v is white:
- Then by the white path theorem, u becomes an ancestor of v
- By the parenthesis theorem v.f<u.f

Topological Sort

- Proof:
- At the time that we are first looking at (u, v) :
- If v is black, then u is still be visited, so
- u is not yet black
- so, u.f>v.f
- qed

Strongly Connected Components

- WWW graph:
- Nodes: pages
- Edges: links from one page to another page
- Broder et al. study (2000): 200 million pages and 1.5 billion links

Strongly Connected Components

- Bowtie:
- Strongly connected component at the center of the WWW (28\%) of all nodes

Strongly Connected Components

- Islands: Isolated areas of the web

Strongly Connected Components

- In: Possible to reach the giant
- Out: Reachable from the giant
tubes

Strongly Connected Components

- Weird stuff: Tubes that move from In to Out bypassing the giant

Strongly Connected Components

- Weird stuff: Tendrils to In and tendrils to Out

Strongly Connected Components

- Strongly connected component:
- Can reach any vertex from any other vertex

Strongly Connected Components

- Strongly connected component
- This is NOT strongly connected

- There is no way to get from D to A

Strongly Connected Components

- Lemma: Let G_{1} and G_{2} be two strongly connected subgraphs of a graph G and assume that there is a path from a vertex in G_{1} to a vertex in G_{2} and also a path from a vertex of G_{2} to G_{1}, then $G_{1} \cup G_{2}$ is strongly connected

Strongly Connected Components

- Proof: Take two nodes a and b in $G_{1} \cup G_{2}$.
- If both are in G_{1} then there is a path between a and b because they are in G_{1}

Strongly Connected Components

- Proof: Take two nodes a and b in $G_{1} \cup G_{2}$.
- If both are in G_{2} then there is a path between a and b because they are in G_{2}

Strongly Connected Components

- If $a \in V\left(G_{1}\right)$ and $b \in V\left(G_{2}\right)$, then we can move from a to u and from u to v and then from v to b.
- After removing cycles, this is now a path from a to b

Strongly Connected Components

- Similarly, if $a \in V\left(G_{2}\right)$ and $b \in V\left(G_{1}\right)$, then we can move from a to v^{\prime} and from v^{\prime} to u^{\prime} and then from u^{\prime} to b.
- After removing cycles, this is now a path from a to b

Strongly Connected Components

- A single node is a strongly connected subgraph
- For each strongly connected subgraph, we can try to grow by adding other nodes
- If a node a has a path to and from a strongly connected subgraph, then by the lemma, we can add the node and get a bigger strongly connected subgraph

Strongly Connected Components

- Strongly connected component : A maximal strongly connected subgraph
- The nodes of any directed graph can be divided into strongly connected components

Strongly Connected Components

- Example:

Strongly Connected Components

- Try it out by growing from individual nodes

Strongly Connected Components

- Result:

Strongly Connected Components

- If we only look at the connected components we get the SCC metagraph
- Nodes are the strongly connected components
- Edges represent the existence of an edge from one component to the next

Strongly Connected Components

Strongly Connected Components

- The resulting metagraph has to be acyclic
- If there is a cycle in the metagraph, then by the lemma, the metanodes can be merged into bigger strongly connected subgraphs

Strongly Connected Components

- Example: Add two edges

Strongly Connected Components

- Now we can start merging via the Lemma
- There is a path from components S to R and vice versa

Strongly Connected Components

- So we merge

Strongly Connected Components

- There is a path from RS to X and vice versa:

Strongly Connected Components

- We can merge

Strongly Connected Components

- Finally, we can merge Z with the new supernode

Z

Strongly Connected Components

- This can be generalized:
- Theorem: The metagraph is acyclic

Strongly Connected Components

- How can we apply DFS to the problem of determining connected components?
- The WWW graph in 2000 would have been to big for anything but linear time algorithms

Strongly Connected Components

- Answer:
- Use DFS several times
- Including indirectly on the metagraph

Strongly Connected Components

Strongly Connected Components

[^0]: A: B, D, G
 B: H
 C: F
 D: B, H
 E: C, D, G
 F:
 G: B

[^1]: visit(B)
 visit(A)

