Applications of Depth First Search

Thomas Schwarz, SJ

- Recall topological sort
 - We are given a directed graph
 - Want to order all vertices such that no edge goes from a higher-numbered vertex to a lower-numbered vertex
 - If this is impossible, then we have a cycle
 - So, our algorithm also detects whether there is a cycle in a directed graph
 - We use DFS for an even better algorithm

- Run DFS on all nodes
 - Order nodes according to finish time in descending order

- Start in A
 - Order

 adjacency
 lists
 alphabetically
 - A: B,C B: H C: E,F,H D: A,G E: F F: I G: C H: I: D

• Visit B

A: B,C B: H C: E,F,H D: A,G E: F F: I G: C H: I: D

visit(B) visit(A)

• Visit H

A: B,C B: H C: E,F,H D: A,G E: F F: I G: C H: I: D

visit(H) visit(B) visit(A)

• Visit E

- visit(E) visit(H) visit(B)
- visit(A)

• Visit F

- visit(F) visit(E)
- visit(H)
- visit(B)
- visit(A)

• Visit I

- visit(I)
- visit(F)
- visit(E)
- visit(H)
- visit(B)
- visit(A)

Visit D

- visit(D)
- visit(I)
- visit(F)
- visit(E)
- visit(H)
- visit(B)
- visit(A)

- At this point:
 - The adjacency list of D starts with A
 - A is gray
 - This edge becomes a back edge!
 - And shows that there is a cycle
 - A: B,C B: H C: E,F,H D: A,G E: F F: I G: C H: I: D

- visit(D)
- visit(I)
- visit(F)
- visit(E)
- visit(H)
- visit(B)
- VISIC(D)
- visit(A)

- A different example
 - Start in A

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

- A different example
 - Start in A

visit(A)

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

• Visit B

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

visit(B)
visit(A)

• Visit H

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

visit(H) visit(B) visit(A)

Visit F

visit(F)

visit(H)

visit(B)

visit(A)

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

- Finish F
- Push F at front: [F]

A:	B,D,G
B:	Н
С:	F
D:	В,Н
E:	C,D,G
F:	
G:	В
H:	F

visit	(F)
visit	(H)
visit	(B)
	<pre>/ _ `</pre>

visit(A)

- Finish H
- Push H at front: [H, F]

A:	B,D,G
В:	Н
С:	F
D:	В,Н
E:	C,D,G
F:	
G:	В
H:	F

visit(H)
visit(B)
visit(A)

- Finish B
- Push B at front: [B,H, F]

- A: B,D,G
 B: H
 C: F
 D: B,H
 E: C,D,G
 F:
 G: B
- H: F

visit(B) visit(A)

- Go back to visit A
- [B,H, F]

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

visit(A)

- Visit D
- [B,H, F]

A:	B,D,G
В:	Н
С:	F
D:	В,Н
E :	C,D,G
F:	
G:	В
Н:	F

visit(D)
visit(A)

- Visit C
- [B,H, F]

A:	B,D,G
В:	Н
С:	F
D:	В,Н
E:	C,D,G
F:	
G:	В
H:	F

visit(A)

- Finish C
- [C, B,H, F]

G	
	$B^{2,7}$ $H^{3,6}$ $F^{4,5}$

A:	B,D,G
В:	Н
С:	F
D:	В,Н
E:	C,D,G
F:	
G:	В
H:	F

visit(C) visit(D) visit(A)

- Go back and finish D
- [D, C, B, H, F]

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

visit(D) visit(A)

- We are back to visit A
- Next node is G
- [D, C, B, H, F]
 - A: B,D,G
 B: H
 C: F
 D: B,H
 E: C,D,G
 F:
 G: B
 H: F

visit(A)

- Visit G
- [D, C, B, H, F]

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

visit(G) visit(A)

- Finish G
- [G, D, C, B, H, F]

- A: B,D,G
 B: H
 C: F
 D: B,H
 E: C,D,G
 F:
 G: B
- H: F

visit(G) visit(A)

- Go back to A
- [G, D, C, B, H, F]

A: B,D,G B: H C: F D: B,H E: C,D,G F: G: B H: F

visit(A)

- Finish A
- [A, G, D, C, B, H, F]

Ø

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

- Done with visit(A)
- [A, G, D, C, B, H, F]

Ø

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

- One white node left: E
- Visit E
- [A, G, D, C, B, H, F]
 - A: B,D,G
 B: H
 C: F
 D: B,H
 E: C,D,G
 F:
 G: B
 H: F

visit(E)

- Finish E
- [E, A, G, D, C, B, H, F]

A: B,D,G
B: H
C: F
D: B,H
E: C,D,G
F:
G: B
H: F

- Key observation from the examples:
 - We have a cycle if we ever try to visit a gray node

• Lemma: A directed graph G = (V, E) is acyclic if and only if a DFS of G yields no back edges

- Proof: "⇒"
 - If DFS produces a back-edge (v, u) then u is an ancestor of v
 - There is a path from u to v in the tree
 - The edge (v, u) closes a cycle
 - from *u* to *v* back to *u*

- Proof: "⇐"
 - Suppose G has a cycle
 - Let *u* be the first vertex in the cycle to be discovered

• All other vertices in the cycle are white and there is a white-path to the node *v* just in front of *u*

- By the white-path theorem:
 - We will discover *v* from *u*
 - (Though not necessarily through the cycle since there might be more cycles)
 - Thus, (v, u) is a back edge

visiting v and discovering a gray node

- Theorem: DFS gives a topological sort or discovers a cycle
- Proof:
 - Need to show:
 - If DFS does not discover a cycle, then for each edge (u, v), we have u .f > v .f

- Proof:
 - At the time that we are first looking at (u, v):
 - v cannot be gray, because then we would have a back-edge

- At the time that we are first looking at (u, v):
 - If *v* is white:
 - Then by the white path theorem, *u* becomes an ancestor of *v*
 - By the parenthesis theorem $v \cdot f < u \cdot f$

- Proof:
 - At the time that we are first looking at (u, v):
 - If *v* is black, then *u* is still be visited, so
 - *u* is not yet black
 - so, u . f > v . f

• qed

- WWW graph:
 - Nodes: pages
 - Edges: links from one page to another page
- Broder et al. study (2000): 200 million pages and 1.5 billion links

- Bowtie:
- Strongly connected component at the center of the WWW (28%) of all nodes
 tubes

• Islands: Isolated areas of the web

- In: Possible to reach the giant
- Out: Reachable from the giant

Weird stuff: Tubes that move from In to Out bypassing the giant

• Weird stuff: Tendrils to In and tendrils to Out

- Strongly connected component:
 - Can reach any vertex from any other vertex

- Strongly connected component
 - This is **NOT** strongly connected

• There is no way to get from D to A

• Lemma: Let G_1 and G_2 be two strongly connected subgraphs of a graph G and assume that there is a path from a vertex in G_1 to a vertex in G_2 and also a path from a vertex of G_2 to G_1 , then $G_1 \cup G_2$ is strongly connected

- Proof: Take two nodes a and b in $G_1 \cup G_2$.
 - If both are in G_1 then there is a path between a and b because they are in G_1

- Proof: Take two nodes a and b in $G_1 \cup G_2$.
 - If both are in G₂ then there is a path between a and b
 because they are in G₂

- If $a \in V(G_1)$ and $b \in V(G_2)$, then we can move from a to u and from u to v and then from v to b.
- After removing cycles, this is now a path from a to b

- Similarly, if $a \in V(G_2)$ and $b \in V(G_1)$, then we can move from a to v' and from v' to u' and then from u' to b.
- After removing cycles, this is now a path from a to b

- A single node is a strongly connected subgraph
- For each strongly connected subgraph, we can try to grow by adding other nodes
- If a node a has a path to and from a strongly connected subgraph, then by the lemma, we can add the node and get a bigger strongly connected subgraph

- Strongly connected component : A maximal strongly connected subgraph
- The nodes of any directed graph can be divided into strongly connected components

• Example:

• Try it out by growing from individual nodes

• Result:

- If we only look at the connected components we get the SCC metagraph
 - Nodes are the strongly connected components
 - Edges represent the existence of an edge from one component to the next

- The resulting metagraph has to be acyclic
 - If there is a cycle in the metagraph, then by the lemma, the metanodes can be merged into bigger strongly connected subgraphs

• Example: Add two edges

- Now we can start merging via the Lemma
- There is a path from components S to R and vice versa

• So we merge

• There is a path from RS to X and vice versa:

• We can merge

• Finally, we can merge Z with the new supernode

- This can be generalized:
 - Theorem: The metagraph is acyclic

- How can we apply DFS to the problem of determining connected components?
 - The WWW graph in 2000 would have been to big for anything but linear time algorithms

- Answer:
 - Use DFS several times
 - Including indirectly on the metagraph