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Topological Sort
• Recall topological sort


• We are given a directed graph


• Want to order all vertices such that no edge goes from 
a higher-numbered vertex to a lower-numbered vertex


• If this is impossible, then we have a cycle


• So, our algorithm also detects whether there is a cycle 
in a directed graph


• We use DFS for an even better algorithm



Topological Sort
• Run DFS on all nodes


• Order nodes according to finish time in descending 
order



Topological Sort
• Start in A


• Order 
adjacency 
lists 
alphabetically

A

B
C

D

E

F

G

H

I

A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D



Topological Sort
• Visit B

A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D

visit(B)  
visit(A) 

A

B
C

D

E

F

G

H

I1

2



Topological Sort
• Visit H

A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D

visit(H) 
visit(B)  
visit(A) 

A

B
C

D

E

F

G

H

I1

2

3



Topological Sort
• Visit E

A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D

visit(E) 
visit(H) 
visit(B)  
visit(A) 

A

B
C

D

E

F

G

H

I1

2

3
4



Topological Sort
• Visit F

A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D

visit(F) 
visit(E) 
visit(H) 
visit(B)  
visit(A) 

A

B
C

D

E

F

G

H

I1

2

3
4

5



Topological Sort
• Visit I

A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D

visit(I) 
visit(F) 
visit(E) 
visit(H) 
visit(B)  
visit(A) 

A

B
C

D

E

F

G

H

I1

2

3
4

5

6



Topological Sort
• Visit D

A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D

visit(D) 
visit(I) 
visit(F) 
visit(E) 
visit(H) 
visit(B)  
visit(A) 

A

B
C

D

E

F

G

H

I1

2

3
4

5

6

7



Topological Sort
• At this point:


• The adjacency list of D starts with A


• A is gray


• This edge becomes a back edge!


• And shows that there is a cycle
A: B,C 
B: H 
C: E,F,H 
D: A,G 
E: F 
F: I 
G: C 
H:  
I: D

visit(D) 
visit(I) 
visit(F) 
visit(E) 
visit(H) 
visit(B)  
visit(A) 

A

B
C

D

E

F

G

H

I1

2

3
4

5

6

7



Topological Sort
• A different example


• Start in A

A

G CD

E

FB HA: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• A different example


• Start in A

A

G CD

E

FB H

1

visit(A)

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Visit B

visit(B) 
visit(A)

A

G CD

E

FB H

1

2A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Visit H

visit(H) 
visit(B) 
visit(A)

A

G CD

E

FB H

1

2 3A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Visit F

visit(F) 
visit(H) 
visit(B) 
visit(A)

A

G CD

E

FB H

1

2 3 4A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Finish F


• Push F at front: [F]

visit(F) 
visit(H) 
visit(B) 
visit(A)

A

G CD

E

FB H

1

2 3 4,5A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Finish H


• Push H at front: [H, F]

visit(H) 
visit(B) 
visit(A)

A

G CD

E

FB H

1

2 3,6 4,5A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Finish B


• Push B at front: [B,H, F]

visit(B) 
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Go back to visit A


• [B,H, F]

visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Visit D


• [B,H, F]

visit(D) 
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Visit C


• [B,H, F]

visit(C) 
visit(D) 
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8 9

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Finish C


• [C, B,H, F]

visit(C) 
visit(D) 
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8 9,10

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Go back and finish D


• [D, C, B, H, F]

visit(D) 
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• We are back to visit A


• Next node is G


• [D, C, B, H, F]

visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Visit G


• [D, C, B, H, F]

visit(G) 
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10
12

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Finish G


• [G, D, C, B, H, F]

visit(G) 
visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Go back to A


• [G, D, C, B, H, F]

visit(A)

A

G CD

E

FB H

1

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Finish A


• [A, G, D, C, B, H, F]

∅

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Done with visit(A)


• [A, G, D, C, B, H, F]

∅

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• One white node left: E


• Visit E


• [A, G, D, C, B, H, F]

visit(E)

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

15

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Finish E


• [E, A, G, D, C, B, H, F]

A

G CD

E

FB H

1,14

2,7 3,6 4,5

8,11 9,10
12,13

15,16

A: B,D,G 
B: H 
C: F 
D: B,H 
E: C,D,G 
F: 
G: B 
H: F



Topological Sort
• Key observation from the examples:


• We have a cycle if we ever try to visit a gray node



Topological Sort
• Lemma: A directed graph  is acyclic if and 

only if a DFS of G yields no back edges
G = (V, E)



Topological Sort
• Proof:  " "


• If DFS produces a back-edge  then  is an 
ancestor of 


• There is a path from  to  in the tree


• The edge  closes a cycle


• from  to  back to 

⇒

(v, u) u
v

u v

(v, u)

u v u u

v

visiting v and discovering a gray node



Topological Sort
• Proof: " "


• Suppose  has a cycle


• Let  be the first vertex in the cycle to be discovered

⇐

G

u

u

v

cycle



Topological Sort
• All other vertices in the cycle are white and there is a 

white-path to the node  just in front of v u

u

v

cycle



Topological Sort
• By the white-path theorem:


• We will discover  from 


• (Though not necessarily through the cycle since 
there might be more cycles) 


• Thus,  is a back edge

v u

(v, u)

u

v

visiting v and discovering a gray node



Topological Sort
• Theorem: DFS gives a topological sort or discovers a 

cycle


• Proof:  


• Need to show: 


• If DFS does not discover a cycle, then for each edge 
, we have  (u, v) u . f > v . f



Topological Sort
• Proof: 


• At the time that we are first looking at :


•  cannot be gray, because then we would have a 
back-edge

(u, v)

v



Topological Sort
• At the time that we are first looking at :


• If  is white:


• Then by the white path theorem,  becomes an 
ancestor of 


• By the parenthesis theorem 

(u, v)

v

u
v

v . f < u . f



Topological Sort
• Proof: 


• At the time that we are first looking at :


• If  is black, then  is still be visited, so


•  is not yet black


• so, 


• qed

(u, v)

v u

u

u . f > v . f



Strongly Connected 
Components

• WWW graph:


• Nodes: pages


• Edges: links from one page to another page


• Broder et al. study (2000): 200 million pages and 1.5 billion links

In outgiant strongly 
connected component

Islands

tendrilstendrils

tubes



Strongly Connected 
Components

• Bowtie:


• Strongly connected component at the center of the WWW 
(28%) of all nodes

In outgiant strongly 
connected component

Islands

tendrilstendrils

tubes



Strongly Connected 
Components

• Islands: Isolated areas of the web

In outgiant strongly 
connected component

Islands

tendrilstendrils

tubes



Strongly Connected 
Components

• In:  Possible to reach the giant


• Out: Reachable from the giant

In outgiant strongly 
connected component

Islands

tendrilstendrils

tubes



Strongly Connected 
Components

• Weird stuff:  Tubes that move from In to Out bypassing 
the giant

In outgiant strongly 
connected component

Islands

tendrilstendrils

tubes



Strongly Connected 
Components

• Weird stuff:  Tendrils to In and tendrils to Out

In outgiant strongly 
connected component

Islands

tendrilstendrils

tubes



Strongly Connected 
Components

• Strongly connected component:


• Can reach any vertex from any other vertex

A

B

C

D

E

F



Strongly Connected 
Components

• Strongly connected component


• This is NOT strongly connected


• There is no way to get from D to A

A

B

C

D

F



Strongly Connected 
Components

• Lemma: Let  and  be two strongly connected 
subgraphs of a graph  and assume that there is a path 
from a vertex in  to a vertex in  and also a path from 
a vertex of  to , then  is strongly connected

G1 G2
G

G1 G2
G2 G1 G1 ∪ G2

G1 G2

u v

u’ v’



Strongly Connected 
Components

• Proof:  Take two nodes  and  in .


• If both are in  then there is a path between  and  
because they are in 

a b G1 ∪ G2

G1 a b
G1

G1 G2

u v

u’ v’

a

b



Strongly Connected 
Components

• Proof:  Take two nodes  and  in .


• If both are in  then there is a path between  and  
because they are in 

a b G1 ∪ G2

G2 a b
G2

G1 G2

u v

u’ v’

a

b



Strongly Connected 
Components

• If  and , then we can move from  
to  and from  to  and then from  to .


• After removing cycles, this is now a path from  to 

a ∈ V(G1) b ∈ V(G2) a
u u v v b

a b

G1 G2

u v

u’ v’

a
b



Strongly Connected 
Components

• Similarly, if  and , then we can move 
from  to  and from  to  and then from  to .


• After removing cycles, this is now a path from  to 

a ∈ V(G2) b ∈ V(G1)
a v′ v′ u′ u′ b

a b

G1 G2

u v

u’ v’

a

b



Strongly Connected 
Components

• A single node is a strongly connected subgraph 


• For each strongly connected subgraph, we can try to 
grow by adding other nodes

a

strongly connected

x

y

• If a node a has a path to 
and from a strongly 
connected subgraph, then 
by the lemma, we can add 
the node and get a bigger 
strongly connected 
subgraph



Strongly Connected 
Components

• Strongly connected component : A maximal strongly 
connected subgraph


• The nodes of any directed graph can be divided into 
strongly connected components



Strongly Connected 
Components

• Example:

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q



Strongly Connected 
Components

• Try it out by growing from individual nodes

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q



Strongly Connected 
Components

• Result:

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q



Strongly Connected 
Components

• If we only look at the connected components we get the 
SCC metagraph


• Nodes are the strongly connected components


• Edges represent the existence of an edge from one 
component to the next



Strongly Connected 
Components

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c d,e,f,g

h

i,j,k,l,m,n

o,p,q



Strongly Connected 
Components

• The resulting metagraph has to be acyclic


• If there is a cycle in the metagraph, then by the lemma, 
the metanodes can be merged into bigger strongly 
connected subgraphs



Strongly Connected 
Components

• Example: Add two edges

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c d,e,f,g

h

i,j,k,l,m,n

o,p,q



Strongly Connected 
Components

• Now we can start merging via the Lemma


• There is a path from components S to R and vice versa

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c d,e,f,g

h

i,j,k,l,m,n

o,p,q

X

Y

Z

R

S



Strongly Connected 
Components

• So we merge

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h d,e,f,g

i,j,k,l,m,n

o,p,q

X

Y

Z

RS



Strongly Connected 
Components

• There is a path from RS to X and vice versa:

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h d,e,f,g

i,j,k,l,m,n

o,p,q

X

Y

Z

RS



Strongly Connected 
Components

• We can merge

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h, 
d, e, f, g

i,j,k,l,m,n

o,p,q

X

Y

Z

RSX



Strongly Connected 
Components

• Finally, we can merge Z with the new supernode 

a

b

c

d

e
f

g

h

i

j

k

l

m

n

o

p

q

a, b, c, h, 
d, e, f, g, 
i, j, k, l, 

m, n

o,p,q

X

Y

Z

RSXZ



Strongly Connected 
Components

• This can be generalized:


• Theorem:  The metagraph is acyclic



Strongly Connected 
Components

• How can we apply DFS to the problem of determining 
connected components?


• The WWW graph in 2000 would have been to big for 
anything but linear time algorithms



Strongly Connected 
Components

• Answer:


• Use DFS several times


• Including indirectly on the metagraph



Strongly Connected 
Components



Strongly Connected 
Components


