Graphs

Thomas Schwarz, SJ

Graph Definition

- A graph has a set of vertices V and a set of edges.
- Directed edges are pairs (u, v) with $u, v \in V$
- Undirected edges are two-sets $\{u, v\}$ with $u, v \in V$
- A graph with directed edges is called a directed graph
- A graph with undirected edges is just called a graph

Graph Definition

- Graphs are represented by:
- drawing the vertices as small circles
- drawing the edges as edges
- Directed edges are drawn as arrows

$$
\begin{aligned}
& \text { An undirected graph with } 7 \\
& \text { vertices and } 7 \text { edges }
\end{aligned}
$$

A directed graph

Graph Definition

- Computer scientist sometimes differ from mathematicians in what is called a graph
- In Mathematics, a(n undirected) graph can
- Have only one edge at most between two vertices
- Cannot have an edge to the same vertex

Graph Definition

- Computer scientist sometimes differ from mathematicians in what is called a graph
- In Mathematics, a directed graph can
- Have only one edge at most between two vertices
- Cannot have an edge to the same vertex

Graph Definition

- Mathematicians call a graph that allows multiple edges between the same pair of vertices
- a multigraph

Graph Representations

- To understand graphs, we can use:
- The visual representation
- E.g. The neighbor graph
- Take a political map

Graph Representations

- Examples:
- Place a vertex in every entity (state, not DDFF)
- Connect vertices if the entities have a common border

Graph Representations

- Vertices are stations
- Edges represent a connection via underground or light rail
- This is multi-graph because several edges can connect a station

Graph Definition

- Different visualizations can still give you the same graph, as you can see from the examples below

Graph Definition

- Two graphs are isomorphic, if there is a renaming of the vertices that converts one into the other and vice versa
- Mathematically, a renaming is a bijection

- These two do not look the same, but they are isomorphic: $a \rightarrow b, b \rightarrow c, c \rightarrow e, d \rightarrow d, e \rightarrow a$

Graph Definition

- Two graphs are isomorphic, if there is a renaming of the vertices that converts one into the other and vice versa
$G=(V, E)$ is isomorphic to $G^{\prime}=\left(V^{\prime}, E^{\prime}\right)$

\Leftrightarrow

$\exists f: V \rightarrow V^{\prime}$ bijection $: \forall v_{1}, v_{2} \in V:\left(f\left(v_{1}\right), f\left(v_{2}\right)\right) \in E^{\prime} \Leftrightarrow\left(v_{1}, v_{2}\right) \in E$

Graph Definition

- Determining whether two graphs are isomorphic is a known, difficult question
- Some results are easy, e.g. vertices of the same rank (the number of edges adjacent to a vertex) need to be mapped to vertices of the same rank
- So, these two graphs cannot be isomorphic

Graph Definition

- These two graphs cannot be isomorphic

- The left graph has two vertices of degree 2
- The right graph has no vertices of degree 2
- But the number of vertices and edges is equal

Graph Definitions

- There are a number of important properties of graphs
- No need to learn them by heart, the ones used in CS will get repeated over and over again
- A path between two vertices $u, w \in V$ of a graph $G=(V, E)$ is a list of vertices $u=v_{0}, v_{1}, \ldots, v_{n-1}, v_{n}=w$ such that there is an edge between all v_{i} and v_{i+1}
- Furthermore, no vertices can be repeated

Graph Definitions

- Example for a path:
- Has length 5 (number of edges)

- Example for a walk that is not a path
- We visit the center vertex twice

Graph Definitions

- For directed graphs, the paths need to follow the arrow

Graph Definitions

- A directed graph (digraph) is strongly connected if there is a path from every vertex to every other vertex

Graph Definitions

- An undirected graph is connected if there is a path from every vertex to every other vertex
- This is not a connected graph

- But it consists of two connected components

Graph Definitions

- Interesting question
- Is the friends graph on facebook connected
- The "friend" relation is mutual, so all users are vertices and there is an edge if two users are in a friends-relation
- Probably not, because we signed up my mom on facebook and she did not like it, so she is no longer friends with anyone
- But how about "active users"
- Could there be a republican and a democratic facebook
- No, but maybe there are isolated groups

Euler Tours

- An Euler tour is a closed tour that traverses each edge of the graph only once.
- Graphs with an Euler tour are called Eulerian
- Theorem: An undirected, connected graph is Eulerian if each vertex has even degree.
- Recall: Degree is the number of edges of the vertex

Euler Tours

- Königsberg bridge problem
- Königsberg had seven bridges over the river Pregel
- Is it possible to have an afternoon walk crossing all bridges exactly once

Euler Tours

- Solved by Euler
- Translate into a multi-graph (multiple edges allowed)

Euler Tours

- Actually, all edges have odd degree, so such a tour is not possible
- To show that the theorem is correct:
- Euler tour exists implies all vertex degrees are even
- Because an Euler tour visits all edges and every time it visits an edge, it needs to come and to go.

Euler Tours

- Other direction can be shown using Fleury's algorithm
- Key observation:
- If we remove the edges from a closed tour
- (starts and ends at the same vertex)
- then in the remaining graph all vertices have still even degree

Euler Tours

- Fleury's algorithm:
- Start at a node and walk anywhere, marking the edge
- Leave the node that you arrived at
- Continue until you can no longer find an unused edge
- At this point, you are back in the starting vertex
- If any of the vertices visited has a unused edges, start with that edge until you are back at that edge.
- Splice the new circuit into the old one

Euler Tours

- Example

Euler Tours

- Start at a random vertex

Euler Tours

- Make a tour

Euler Tours

- Check for vertices with unused edges and pick a random one

Euler Tours

- Start out creating a random circuit of unused edges

Euler Tours

- Pick another vertex with unused edges

Euler Tours

- Start a new part of the circuit

- Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

Euler Tours

- In the new circuit, there are still vertices without all edges used.
- Pick one

- Circuit so far: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.6, 8.7, 8.8

Euler Tours

- And after this, we are done

- Circuit is: 1, 2, 2.1, 2.2, 2.3, 2.4, 3, 4, 5, 6, 7, 8, 8.1, 8.2, 8.3, 8.4, 8.5, 8.5.1, 8.5.2, 8.5.3, 8.5.4, 8.5.5, 8.5.6, 8.5.7, 8.5.8 8.6, 8.7, 8.8

Hamiltonian Circuit

- Similar question: Is there a circuit that goes through all vertices

Hamiltonian Circuit

- Turns out to be very difficult
- Can be shown to not be decidable with a polynomial time algorithm

Graph Definitions

- Distance in a graph:
- Length of the shortest path between two vertices
$\delta(u, w)=\min \left\{n \mid \exists v_{0}=u, v_{1}, \ldots v_{n}=w\right.$ such that $\left(v_{i}, v_{i+1} \in E \forall i \in\{0, \ldots, n-1\}\right\}$

Dijkstra's Algorithm

- Want to determine the distance between a vertex s and all other vertices in an undirected graph
- Dynamic programming algorithm
- Add intermediate vertices one by one
- Start: Every vertex not s gets distance infinity
- s gets distance 0
- Put all vertices into a priority heap ordered by distance
- We can quickly extract a vertex with minimum distance

Dijkstra's Algorithm

- Example:

Dijkstra's Algorithm

- Update s :
- Give all neighbors of s distance 1

Dijkstra's Algorithm

- The heap gives us one of $\{a, b\}$ as a minimum distance node.
- Pick a.
- Update all its neighbors by giving them an updated distance
- Minimum of current value
- Value of a plus 1
- a is connected to b, c, and s

Dijkstra's Algorithm

- b gets $\min (1,1+1)$
- s gets $\min (0,1+1)$
- d gets min(inf, 1+1)

Dijkstra's Algorithm

- b gets $\min (1,1+1)$
- s gets $\min (0,1+1)$
- d gets min(inf, 1+1)
- After update, mark a as used by removing it from the priority queue

Dijkstra's Algorithm

- Pick the node with minimum distance that is not marked
- Which would be b
- Update its neighbors

Dijkstra's Algorithm

- d gets $\min (2,1+1)$
- c gets min(inf, $1+1$)
- e gets min(inf, $1+1$)
- s gets $\min (0,1+1)$

Dijkstra's Algorithm

- Select one of the vertices with minimum distance:
- Either c, d, or e
- Pick c
- b gets $\min (1,2+1)$
- d gets $\min (2,2+1)$
- e gets $\min (2,2+1)$
- f gets min(inf, 2+1)
- Remove c from the priority heap

Dijkstra's Algorithm

- Select e
- Update b with $\min (1,2+1)$
- Update c with min $(2,2+1)$
- Update d with $\min (2,2+1)$
- Update f with $\min (3,2+1$
- Remove e from priority heap

Dijkstra's Algorithm

- Select d
- Updates have no effect
- Remove d from heap

Dijkstra's Algorithm

- Select g
- Only change is h gets 4
- Remove g from priority heap

Dijkstra's Algorithm

- Need to select f
- Update only changes h

Dijkstra's Algorithm

- Need to select h
- Does not change any value

Dijkstra's Algorithm

- Need to select i as the only node left
- But that does not change any values

Dijkstra's Algorithm

- Dijkstra's algorithm can be generalized to weighted graphs

Dijkstra's algorithm

- Your turn
- Rule:
- Of course you choose smallest distance first, but you break ties in order of the alphabet, e.g. select a over f

Dijkstra's algorithm

- Select s

Dijkstra's algorithm

- Update a and f

Dijkstra's algorithm

- Select a
- Update b and d
- s stays the same

Dijkstra's algorithm

- Select f (no choice here)

Dijkstra's algorithm

- Select b

Dijkstra's algorithm

- Select d

Dijkstra's algorithm

Dijkstra's algorithm

- Select g

Dijkstra's algorithm

- Select h

Dijkstra's algorithm

- Select C
- We might as well stop here
- All updated values will be 4 or more, and every node has already a 3

Graph Representations

- For computational purposes, we can use:
- List of vertices and list of edges as pairs

$$
\begin{aligned}
& V=\{a, b, c, d, e, f, g, h, i, j\} \\
& E=\{(a, b),(a, e),(a, f),(a, i),(b, c), \\
& (b, i),(b, j),(c, d),(c, g),(c, j),(d, e) \\
& (d, h),(d, g),(e, f),(e, h),(f, h),(f, i), \\
& (g, h),(g, j),(i, j)\}
\end{aligned}
$$

Dijkstra's Algorithm

- Need to maintain a priority heap
- Otherwise
- Look at every node
- And every edge twice

Graph Representations

- An adjacency list
- For every vertex the list of vertices to which there is an edge

$$
\text { - } \begin{aligned}
& a: b, e, f, i \\
& b: a, c, i, j \\
& c: b, d, g, j \\
& d: c, e, g, h \\
& e: a, f, d, h \\
& f: a, e, h, i \\
& g: c, d, h, j \\
& h: d, e, f, g \\
& i: a, b, f, j \\
& j: b, c, g, i
\end{aligned}
$$

Graph Representations

- An adjacency matrix
- square matrix
conceptually labeled with vertices
- coefficient

	a	b	c	d	e	f	a	h	i	i
a	0	1	0	0	1	1	0	0	1	0
b	1	0	1	0	0	0	0	0	1	1
c	0	1	0	1	0	0	1	0	0	1
d	0	0	1	0	1	0	1	1	0	0
e	1	0	0	1	0	1	0	1	0	0
f	1	0	0	0	1	0	0	1	1	0
a	0	0	1	1	0	0	0	1	0	1
h	0	0	0	1	1	1	1	0	0	0
i	1	1	0	0	0	1	0	0	0	1
i	0	1	1	0	0	0	1	0	1	0

Number of Vertices and Edges

- Graph $G=(V, E)$ with vertices V and edges E
- Whether directed or undirected, graph can have as many edges as there are pairs of vertices
- The latter is $\binom{|V|}{2}=\frac{|V|(|V|-1)}{2}$
- Number of edges is at most $O\left(|V|^{2}\right)$

Number of Vertices and Edges

- Graph $G=(V, E)$ with vertices V and edges E
- Graph algorithms usually need to look at each edge at least once
- there are some idiosyncratic exceptions
- They usually run in time at least $\Theta\left(|V|^{2}\right)$
- However, many important graphs are sparse:
- No edge between most pairs of vertices

Topological Sort

- We can use a directed graph in order to represent a precedence relation
- Topological sort:
- Given a directed graph:
- Order all vertices in an order such that an edge always goes from a preceding to a succeeding vertex
- Or show that this is impossible because there is a cycle

Topological Sort

- Example 1:
- Can arrange all vertices such that arrows only go down
- Sort is a,b,c,d,e,f,g,h,i,j

Topological Sort

- Example:
- There is a cycle, a topological sort is not possible

Topological Sort

- A simple algorithm:
- Go to the adjacency list

- Find a vertex with empty list, add it to a list, and remove it from the graph

Topological Sort

- A simple algorithm

```
a: b, c,h
b: d,j
d:
e: f
f:
g:
h: e
i: g
```


- List contains $\{c\}$

Topological Sort

- A simple algorithm

```
a: b, c,h
b: d,j
    d:
    e: f
    f:
    h: e
    i:
```


- Remove g and add it to the list $\{c, g\}$

Topological Sort

- A simple algorithm

```
a: b, c,h
b: d,j
    d:
e: f
f:
h: e
j:
```


- Remove i and add it to the list $\{c, g, i\}$

Topological Sort

- A simple algorithm

```
a: b, c,h
b: d, j
e: f
    f:
    h: e
    j:
```


- Remove d and add it to the list $\{c, g, i, d\}$

Topological Sort

- A simple algorithm

- Remove f and add it to the list $\{c, g, i, d, f\}$

Topological Sort

- A simple algorithm

h: e
- Remove j and add it to the list $\{c, g, i, d, f, j\}$

Topological Sort

- A simple algorithm

- Remove b and add it to the list $\{c, g, i, d, f, j, b\}$

Topological Sort

- A simple algorithm

- Remove e and add it to the list $\{c, g, i, d, f, j, b, e\}$

Topological Sort

- A simple algorithm

$$
a:
$$

- Remove a and add it to the list $\{c, g, i, d, f, j, b, e, h, a\}$

Topological Sort

- The reverse list is the topological sort:
- $\{a, h, e, b, j, f, d, i, g, c\}$

Topological Sort

- In this version, we have
- To determine the length of the adjacency list
- After selecting a vertex, delete that vertex from all the adjacency lists
- The latter means scanning all adjacency lists repeatedly
- This is inefficient

Topological Sort

- Question: How can we do this better?

Topological Sort

- Instead of optimizing the search for vertices, we can optimize the selection of the vertex for removal
- Better algorithm:
- Find the in-degree for all vertices
- That is the number of edges going into a vertex
- While there are vertices with in-degree 0
- Remove the vertex
- Update the in-degrees

Topological Sort

- Example:

```
a: b, c,h
b: d,j
c:
d: c, j
e: f
f:
g:
h: e
i: g
j:
```


- Initialize in-degree 0 for all vertices

Topological Sort

- Example:

```
a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:
```


- Initialize in-degree 0 for all vertices

Topological Sort

- Example:

```
a: b,c,h
b: d,j
c:
d: c,j
e: f
f:
g:
h: e
i: g
j:
```


- Go through the adjacency list.
- For each vertex in an adjacency list, add 1 to the in-degree
- For a, we change three in-degrees

Topological Sort

- Example:
$a: b, c, h$
$b: d, j$
$c:$
$d: c, j$
$e: f$
$f:$
$g:$
$h:$
h
$i:$
i
$j:$
j

- Go through the adjacency list.
- After processing all adjacency lists, we have the correct in-degrees

Topological Sort

- Example:

- Now we start the removal phase
- We need to find a vertex with in-degree 0
- How can we make this more efficient?

Topological Sort

- Example:

- Now we start the removal phase
- We need to find a vertex with in-degree 0
- Could place the vertices in a heap

Topological Sort

- Example:

- We select a for the removal
- We go through its adjacency list and reset the in-degrees of the nodes there

Topological Sort

- Example:

```
b: d,j
C:
d: c,j
e: f
f:
g:
h: e
i: g
j:
```


- We select a for the removal: $\{a\}$
- We go through its adjacency list and reset the in-degrees of the nodes there

Topological Sort

- Example:

- We update our heap and select one of the 0-in-degree vertices:
- b: $\{a, b\}$
- and update the in-degrees of d and j

Topological Sort

- Example:

- We update our heap and select one of the 0-in-degree vertices:
- b: $\{a, b\}$
- and update the in-degrees of d and j

Topological Sort

- Example:

- We now randomly pick on of the vertices with degree 0, let's pick i
- Deleting it means just decrementing the in-degree of g

Topological Sort

- Example:

- We add g to our list $\{a, b, i, g\}$

Topological Sort

- Example:

- There are three nodes with in-degree 0 , let's pick h

Topological Sort

- Example:

- There are three nodes with in-degree 0 , let's pick h

Topological Sort

- Example:

$c:$	
$d:$	c, j
$e:$	f
f:	
$g:$	
$h:$	e
$i:$	g
$j:$	

(g) ${ }^{0}$

- Need to update in-degree of e
- $\{a, b, i, g, h\}$

Topological Sort

- Example:

- There are two nodes with in-degree 0 , let's pick d

Topological Sort

- Example:

```
C:
e: f
f:
g:
```


- $\{a, b, i, g, h, d\}$

Topological Sort

- Example:
C:
$e: f$
(C) 0
f:
g:
(i) ec
(g) ${ }^{0}$
- $\{a, b, i, g, h, d\}$
- Can pick among four nodes: e

Topological Sort

- Example:

$$
C:
$$

(c) ${ }^{0}$
(g) 0

- $\{a, b, i, g, h, d, e\}$
- Can pick among four nodes in any order

Topological Sort

- Example:

- $\{a, b, i, g, h, d, e, h, j, f\}$
- Can pick among four nodes in any order

Topological Sort

- Analysis for topological sort on $G=(V, E)$
- Need to establish in-degrees:
- Process all elements in an adjacency list
- Correspond to edges
- work $\sim|E|$
- For each vertex:
- find the vertex as a vertex of minimum in-degree
- update in-degrees by going through the adjacency list
- Latter work is $\sim|E|$ because we process each adjacency list entry once
- Delete the adjacency list
- Work is $\sim V$

Topological Sort

- This algorithm is almost $O(|E|)$ but for finding the minimum in-degree
- We will see a better algorithm shortly

Weighted Graphs

- Graphs with edge weights
- Often, graphs in CS have edge weights
- Example: edge weight indicates the size of a pipeline
- such as network connection, capacity of roads, etc.

How much can you pump from source to destination if the pipes have the indicated capacities (Flow Problem)

Weighted Graphs

- Graphs with edge weights
- Weights can indicate distance
- What is the shortest distance from source to destination

Destination

