Huffman Coding

Greedy Algorithms

Prefix-free Codes

- Binary, variable length code
- Binary: code symbols are 0 and 1
- Variable length: code words have variable length
- To allow decoding:
- no prefix of a code word can be part of another code word
- Otherwise:
- Cannot decide easily between prefix and complete

Prefix-free Codes

- Prefix codes can be represented as binary trees
- Left branch is labelled with 0 , right with 1
- Leaves
correspond to symbols
- Path to leaf is

Prefix-free Codes

- Start at top

Prefix-free Codes

- Start at top
- First letter is 1 :
- Go to the right

Prefix-free Codes

- Start at top
- First letter is 1 :
- Go to the right
- Have processed 1

Prefix-free Codes

- Start at top
- First letter is 1 :
- Go to the right
- Have processed 1

Prefix-free Codes

- Start at top
- First letter is 1 :
- Go to the right
- Have processed 1
- Second letter is 0 :

Prefix-free Codes

- Start at top
- First letter is 1 :
- Go to the right
- Have processed 1
- Second letter is 0 :
- Go to the left

Prefix-free Codes

- Start at top
- First letter is 1 :
- Go to the right
- Have processed 1
- Second letter is 0 :
- Go to the left
- We are in a leaf

Prefix-free Codes

- Start at top
- First letter is 1 :
- Go to the right
- Have processed 1
- Second letter is 0 :
- Go to the left
- We are in a leaf
- Emit the value of the leaf: d

Prefix-free Codes

- Restart at the top

Prefix-free Codes

- Restart at the top
- Next letter is 1
- Go to the right

Prefix-free Codes

- Restart at the top
- Next letter is 1
- Go to the right
- Process repeats

Prefix-free codes

- Decoding 1010100010100101
- Start at top
- Follow bits
- 10 - d
- 10 - d
- 10 - d
- 00 - a
- 010 - b
- 10 - d
- ...

Prefix-free Codes

Answer

Huffman Coding

- Obviously, there are many binary trees with a certain number of leaves
- If the symbols appear with different frequencies, then we want to encode frequent ones with short codes and infrequent ones with longer codes
- Huffman Coding:
- Greedy algorithm to calculate an optimal encoding

Huffman Coding

- Measure of goodness
- Frequency of symbols $f(x)$
- Depth of corresponding leaf $=$ length of encoding $d(x)$
- Average Encoding Costs $B=\sum_{x} f(x) \cdot d(x)$

Huffman Coding

$B=2 \times 0.05+3 \times 0.125+3 \times 0.175+2 \times 0.05+4 \times 0.1+4 \times 0.2+3 \times 0.3=3.12$

Huffman Coding

$$
B=4 \times 0.05+4 \times 0.05+3 \times 0.1+2 \times 0.2+3 \times 0.125+3 \times 0.175+2 \times 0.3=2.6
$$

Huffman Coding

- As we can see, different trees have different expected encoding length

Huffman Coding

- Let T be a binary (encoding) tree and let T^{\prime} be the tree obtained by swapping two leaves y and w.
- Then the difference in the B-values is

Huffman Coding

- Proof:
- The only difference are the addends corresponding to y and w

$$
\begin{aligned}
& B\left(T^{\prime}\right)-B(T) \\
= & f(y) d_{T^{\prime}}(y)+f(w) d_{T^{\prime}}(w)-f(y) d_{T}(y)-f(w) d_{T}(w) \\
= & f(y) d_{T}(w)+f(w) d_{T}(y)-f(y) d_{T}(y)-f(w) d_{T}(w) \\
= & (f(y)-f(w))\left(d_{T}(w)-d_{T}(y)\right)
\end{aligned}
$$

Huffman Coding

- What does
$B\left(T^{\prime}\right)-B(T)=(f(y)-f(w))\left(d_{T}(w)-d_{T}(y)\right)$ mean?
- If $f(y)>f(w)$ then y better be up higher in the tree or we can gain by swapping

Huffman Coding

- Lemma: There exists an optimal tree such that the two lowest-frequency symbols are neighbors
- Furthermore, they have the highest distance from the root

Huffman Coding

- Proof:
- Let y and w be the two symbols with the lowest frequency
- If there is a tie, take the ones with the biggest depth
- We are going to show that we can transform the tree into a better (or equally good) one where they are neighbors
- Assume that $d_{T}(w) \geq d_{T}(y)$

Huffman Coding

- Assume that there is another leaf z at larger distance than w
- z has higher frequency and higher distance from root

Huffman Coding

- How does the B-value change?
- $B\left(T^{\prime}\right)-B(T)=\binom{f(z)-f(w)}{\geq 0}\left(d_{T}(w)-d_{T}(z)\right)$
- It goes down, i.e. the new tree is better

Huffman Coding

- We now know that we can have a better or equally good tree where w is a leaf at furthest distance from the root
- Case distinctions based on the sibling of w
- y and w are siblings
- w has another sibling
- w has no sibling

Huffman Coding

- Case Distinction:
- Case 1: y and w are siblings
- We are done, this is what we are supposed to show

Huffman Coding

- Case 2: w has a sibling z
- Then $f(z) \geq f(y)$ and $d_{T}(z)=d_{T}(w) \geq d_{T}(y)$

$$
B\left(T^{\prime}\right)-B(T)=(f(y)-f(w))\left(d_{T}(w)-d_{T}(y)\right)
$$

Huffman Coding

Swap y and z

- Since $f(z) \geq f(y)$ and $d_{T}(z)=d_{T}(w) \geq d_{T}(y)$
- If we swap y and z
- $B\left(T^{\prime}\right)-B(T)=(f(y)-f(z))\left(d_{T}(z)-d_{T}(y)\right)$ is zero or negative
- We are lowering the B-value, so we get a better (or equally good) tree

Huffman Coding

- Case 3:
- w has no sibling
- Then we can move w up and get a better tree
- The only thing that changes is $d_{T}(w)$, which becomes lower

Move w up to get a better tree

Huffman Coding

- The "Greedy" property
- A greedy algorithm is a step-by-step algorithm
- At each step, make an optimal decision based only on the information in the current step
- In our case:
- How do we reduce the problem of finding an optimal tree to a simpler one
- Already know that the two least frequent symbols are siblings in an optimal tree

Huffman Coding

- Reduction step:
- Merge the two least frequent code symbols

Huffman Coding

- Create a new 'character' $y \bar{w}$
- Left: alphabet is Σ Right: alphabet is $\Sigma-\{y, w\} \cup\{y \bar{w}\}$

Reduction Step

Huffman Coding

- Create a new 'character' $y \bar{w}$
- Frequency is $f(y \bar{w})=f(y)+f(w)$

Huffman Coding

- Everything else stays the same

Huffman Coding

- Need to show that this step does not counter optimality.
- Lemma: If the tree T obtained on the alphabet $\Sigma-\{y, w\}+\{y \bar{w}\}$ is optimal, then the tree T^{\prime} replacing the $y \bar{w}$ node with y and w is also optimal

Huffman Coding

- Proof:
- First we calculate the change in the B-values

Huffman Coding

- Proof:
- First we calculate the change in the B-values

$$
B\left(T^{\prime}\right)-B(T)=\sum_{c \in \Sigma^{\prime}} f_{T^{\prime}}(c) d_{T^{\prime}}(c)-\sum_{c \in \Sigma} f_{T}(c) d_{T}(c)
$$

Huffman Coding

- Proof:
- First we calculate the change in the B-values

$$
\begin{gathered}
B\left(T^{\prime}\right)-B(T)=\sum_{c \in \Sigma^{\prime}} f_{T^{\prime}}(c) d_{T^{\prime}}(c)-\sum_{c \in \Sigma} f_{T}(c) d_{T}(c) \\
=f_{T^{\prime}}(y \bar{w}) d_{T^{\prime}}(y \bar{w})-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(w)
\end{gathered}
$$

We are summing up mostly over the same elements, so most addends cancel out and this is what it is left

Huffman Coding

- Proof:
- First we calculate the change in the B-values

$$
\begin{aligned}
& B\left(T^{\prime}\right)-B(T)=\sum_{c \in \Sigma^{\prime}} f_{T^{\prime}}(c) d_{T^{\prime}}(c)-\sum_{c \in \Sigma} f_{T}(c) d_{T}(c) \\
& =f_{T^{\prime}}(y \bar{w}) d_{T^{\prime}}(y \bar{w})-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(w) \\
& =f_{T^{\prime}}(y \bar{y}) d_{T^{\prime}}(y \bar{w})-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(y)
\end{aligned}
$$

y and w are siblings and therefore have the same distance from the root

Huffman Coding

- Proof:
- First we calculate the change in the B-values

$$
\begin{aligned}
& B\left(T^{\prime}\right)-B(T)=\sum_{c \in \Sigma^{\prime}} f_{T^{\prime}}(c) d_{T^{\prime}}(c)-\sum_{c \in \Sigma} f_{T}(c) d_{T}(c) \\
& =f_{T^{\prime}}(y \bar{w}) d_{T^{\prime}}(y \bar{w})-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(w) \\
& =f_{T^{\prime}}(y \bar{w}) d_{T^{\prime}}(y \bar{w})-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(y) \\
& =\left(f_{T}(y)+f_{T}(w)\right)\left(d_{T}(y)-1\right)-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(y)
\end{aligned}
$$

The combined node is located at a level one up compared to the single nodes for y and w

Huffman Coding

- Proof:
- First we calculate the change in the B-values

$$
\begin{aligned}
& B\left(T^{\prime}\right)-B(T)=\sum_{c \in \Sigma^{\prime}} f_{T^{\prime}}(c) d_{T^{\prime}}(c)-\sum_{c \in \Sigma} f_{T}(c) d_{T}(c) \\
& =f_{T^{\prime}}(y \bar{w}) d_{T^{\prime}}(y \bar{w})-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(w) \\
& =f_{T^{\prime}}(y \bar{w}) d_{T^{\prime}}(y \bar{w})-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(y) \\
& =\left(f_{T}(y)+f_{T}(w)\right)\left(d_{T}(y)-1\right)-f_{T}(y) d_{T}(y)-f_{T}(w) d_{T}(y) \\
& =-f_{T}(y)-f_{T}(w)
\end{aligned}
$$

Huffman Coding

- So, by dividing the node $y \bar{w}$ we have to pay a penalty of $f(y)+f(w)$.

Huffman Coding

- Now, assume that the left tree is optimal and the right tree is not optimal

Huffman Coding

- Then there exists a tree S that is better the tree with y and w
- We can assume that in this tree, y and w are leave nodes because of the previous lemma

Huffman Coding

- We now do the same merge step for S and T

Huffman Coding

- The B-value for the tree on the right is the B-value of S minus $f(w)+f(y)$
- Which is equal or worse than of the tree on the left

Huffman Coding

- The B-value for the tree on the right is the B-value of S minus $f(w)+f(y)$
- Which is equal or worse than of the tree on the left
- Which is the B-value of T plus $f(w)+f(y)$

Huffman Coding

- Thus, S does not have a better B-value

Huffman Coding

- Huffman's algorithm:
- If there is only one symbol, create a single node tree
- Otherwise, select the two most infrequent symbols
- Combine them with a common ancestor

- Give the common ancestor the sum of the frequencies
- Treat the ancestor as a symbol with this frequency
- Repeat until there is only one symbol

Huffman Coding

- Example:
- Absolute frequencies are
- a - 120
- b - 29
- c - 534
- d - 34
- e-2549
- f - 321
- g - 45

Huffman Coding

- Example:
- Absolute frequencies are
- a - 120, b - 29, c - 534, d - 34, e - 2549, f 321, g - 45
- Combine b and d into (bd)

Huffman Coding

- Example:
- Absolute frequencies are
- a - 120, b - 29, c - 534, d - 34, e - 2549, f 321, g - 45
- Combine b and d into (bd)
- $a-120, c-534$, e-2549, f-321, g-45, (b) (d) 63

$$
\begin{aligned}
& \mathrm{a}-120, \mathrm{~b}-29, \mathrm{c}-534, \mathrm{~d}-34, \mathrm{e}-2549, \\
& \mathrm{f}-321, \mathrm{~g}-45
\end{aligned}
$$

Huffman Coding

- Example:
- $\mathrm{a}-120, \mathrm{c}-534, \mathrm{e}-2549, \mathrm{f}-321, \mathrm{~g}-45$, (b) (c) 63
- Combine g and (6) (6)
- $a-120, c-534, e-2549, f-321$, -108

$$
\begin{aligned}
& \mathrm{a}-120, \mathrm{~b}-29, \mathrm{c}-534, \mathrm{~d}-34, \mathrm{e}-2549, \\
& \mathrm{f}-321, \mathrm{~g}-45
\end{aligned}
$$

Huffman Coding

- Example:
- $a-120, c-534, e-2549, f-321$, © -108
- Combine a and ©
- Obtain c-534, e-2549, f-321, © - 228

$$
\begin{aligned}
& \mathrm{a}-120, \mathrm{~b}-29, \quad \mathrm{c}-534, \mathrm{~d}-34, \mathrm{e}-2549, \\
& \mathrm{f}-321, \mathrm{~g}-45
\end{aligned}
$$

Huffman Coding

- Example:
- c-534, e-2549,f-321, ๑๐ - 228
- Combine fand
- c-534, e-2549, © - 549

$$
\begin{aligned}
& \mathrm{a}-120, \mathrm{~b}-29, \mathrm{c}-534, \mathrm{~d}-34, \mathrm{e}-2549, \\
& \mathrm{f}-321, \mathrm{~g}-45
\end{aligned}
$$

Huffman Coding

- c-534, e-2549, © - 549
- Combine c with the tree
- Then combine with e

$$
\begin{aligned}
& \mathrm{a}-120, \mathrm{~b}-29, \mathrm{c}-534, \mathrm{~d}-34, \mathrm{e}-2549, \\
& \mathrm{f}-321, \mathrm{~g}-45
\end{aligned}
$$

Huffman Coding

- Result is

Huffman Coding

- B-value needs relative frequencies

>>> total $=120+29+534+34+2549+321+45$
>>> 29/total*6+34/total*6+45/total*5+120/
total*4+321/total*3+534/total*2+2549/total*1
1.5591960352422907

Huffman Coding

- Notice how much choice we have in building this tree
- We can switch the order of the trees that we put together
- For this one, the encoding is

$$
\begin{aligned}
& e-1 \\
& \mathrm{c}-\mathrm{O} \\
& \mathrm{f}-01 \\
& \mathrm{a}-001 \\
& \mathrm{~g}-0001 \\
& \mathrm{~b}-0001 \\
& \mathrm{~d}-00000 \\
& \text { - } 000001
\end{aligned}
$$

Huffman Coding

- Try it out yourself
- a - 0.23
- e-0.35
- i - 0.16
- o-0.15
- u-0.11

Huffman Coding

- Solution
- Have a - 0.23, e - 0.35, i - 0.16, o - 0.15, u - 0.11
- First combine o and u for 'ou' with frequency 0.26
- a - 0.23
- e-0.35
- i - 0.16
- ou - 0.26

Huffman Coding

- Solution
- Have a -0.23 , e -0.35 , i -0.16 , ou -0.26
- Combine i and a
- e-0.35
- ai - 0.39
- ou-0.26

Huffman Coding

- Solution
- Have e-0.35, ai - 0.39 , ou -0.26
- Combine ou with e
- e(ou) 0.61
- ai 0.39

Huffman Coding

- Solution
- Have e(ou) - 0.61 ai - 0.39
- Combine to get (e(ou)) (ai) with frequency 1.00

Huffman Coding

- Solution
- Have (e(ou)) (ai) with frequency 1.00
- Translate to tree

Huffman Coding

- Solution
- Label tree edges

Huffman Coding

- Solution
- Read off encoding
- $a-10$
- e-01
- $\mathrm{i}-11$
- o - 000
- u - 001

Huffman Coding

- Solution
- Determine B-value from tree
- a - 0.23
- e-0.35
- i - 0.16
- o - 0.15
- u - 0.11

$$
\begin{aligned}
& 3 * 0.11+3 * 0.15+2 * 0.16+2 * 0.35+2 * 0.23= \\
& 2.2600000000000002
\end{aligned}
$$

