Greedy Algorithms

Algorithms

The Change Making Problem

- A given country uses a weird set of coins
- $1,3,5,8$
- How do you make change with the least number of coins?
- With these coins, it is not so obvious
- Normally, we can just start out with the largest coin that fits, but not in this case
- Making change for 15 :
- Use an 8, a 5 and two 1s
- But three 5 s is better

The Change Making Problem

- To solve the change making problem, we can use dynamic programming
- Some notation: v_{i} value of coin $i, i \in\{1, \ldots, n\}$
- Best number of coins for change of x is
- Best number of coins for change of $x-v_{1}$ plus one
- Best number of coins for change of $x-v_{2}$ plus one
- ...
- Best number of coins for change of $x-v_{n}$ plus one

The Change Making Problem

- To organize the calculation
- Create a tableau
- For row i, column j :
- How many coins to make change for an amount of i with coins $1, \ldots, j$

The Change Making Problem

- Example: Coins with values $1,3,5,8$ to make change of 15

Value ones threes five eights	
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	

The Change Making Problem

- Example: Coins with values $1,3,5,8$ to make change of 15
- First column is easy

Value	ones threes five eights	
1	1	
2	2	
3	3	
4	4	
5	5	
6	6	
7	7	
8	8	
9	9	
10	10	
11	11	
12	12	
13	13	
14	14	
15	15	

The Change Making Problem

- Second column asks how many threes I should use
- Example for value 10:
- Can use none
- Cost is 10
- Can use one three
- Cost is $1+7$
- Can use two threes
- Cost is $2+4$
- Can use three threes
- Cost is $3+1$

Value	ones	threes	five	eights
0	0	0	0	0
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10	$? ? ?$		
11	11			
12	12			
13	13			
14	14			
15	15			

The Change Making Problem

- Second column asks how many threes I should use
- Formula is
$\min \left\{T_{i-v_{j}, j-1}+\nu \mid \nu=0,1, \ldots,\left\lfloor\frac{i}{v_{i}}\right\rfloor\right\}$
$T_{i-v_{j} v, j-1}$ costs of making change of $i-\nu v_{j}$ with coins up to $j-1$
$+\nu$ costs of using ν coins of value v_{j}

Value	ones	threes	five	eights
0	0	0	0	0
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10	$? ? ?$		
11	11			
12	12			
13	13			
14	14			
15	15			

The Change Making Problem

- Our alternatives are:
- No threes: 10
- One three: $7+1=8$
- Two threes $4+2=6$
- Three threes $1+3=4$

Value	ones	threes	five	eights
0	0	0	0	0
1	1			
2	2			
3	3			
4	4			
5	5			
6	6			
7	7			
8	8			
9	9			
10	10	4		
11	11			
12	12			
13	13			
14	14			
15	15			

The Change Making Problem

- Filling in the other values

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1		
2	2	2		
3	3	1		
4	4	2		
5	5	3		
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- The first values are simple since we cannot use a five

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1		
2	2	2		
3	3	1		
4	4	2		
5	5	3		
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- The first values are simple since we cannot use a five

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3		
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 5 :
- Can use a five
- Can not use a five:
- 3 coins according to previous column

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2		
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 6:
- Can use 5
- Costs: 1+1
- Cannot use 5
- Costs 2

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3		
8	8	4		
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 8 :
- Can use 5
- Costs: 1+1
- Cannot use 5
- Costs 4

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3		
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 9 :
- Can use 5
- Costs: 2+1
- Cannot use 5
- Costs 3

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4		
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 10 :
- Can use two 5s
- Can use one 5
- Costs: 3+1
- Can use no 5s
- Costs 3

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5		
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 11:
- Can use two 5s
- Costs 2+1
- Can use one 5
- Costs: 2+1
- Can use no 5 s
- Costs 5

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4		
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 12 :
- Can use two 5s
- Costs 2+2
- Can use one 5
- Costs: 3+1
- Can use no 5s
- Costs 4

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5		
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 13 :
- Can use two 5s
- Costs 2+1
- Can use one 5
- Costs: $4+1$
- Can use no 5 s
- Costs 5

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6		
15	15	5		

The Change Making Problem

- Now on to five
- At value 14:
- Can use two 5s
- Costs 2+1
- Can use one 5
- Costs: 3+1
- Can use no 5 s
- Costs 6

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6	3	
15	15	5		

The Change Making Problem

- Now on to five
- At value 15 :
- Can use three 5 s
- Costs 3
- Can use two 5s
- Costs 2+3
- Can use one 5
- Costs: 4+1
- Can use no 5 s
- Costs 5

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6	3	
15	15	5	3	

The Change Making Problem

- Now on to eights
- At value 15 :
- Can use one eight
- Costs 1+3
- Can use no eights
- Costs: 3

Value	ones	threes	five	eights
0	0	0	0	0
1	1	1	1	
2	2	2	2	
3	3	1	1	
4	4	2	2	
5	5	3	1	
6	6	2	2	
7	7	3	3	
8	8	4	2	
9	9	3	3	
10	10	4	2	
11	11	5	3	
12	12	4	4	
13	13	5	3	
14	14	6	3	
15	15	5	3	3

The Change Making Problem

- Alternative: Memoization and Recursion
- Instead of using a tableau
- (or rather two, one to remember the best choice)
- Can use recursion and memoization
- Simplest form:
- What was the last coin that was added
- It has to be one of the coins: e.g. 1, 3, 5, or 8
- The costs are the cost of making change for the amount minus the value of the coin plus one for the coin itself

The Change Making Problem

- Alternative: Memoization and Recursion
- Recursion

$$
c(n)=\min \left\{c\left(n-v_{i}\right)+1\right\}
$$

- where the minimum is taken over all different coin values
- We also write the coin which causes the minimum to be selected

The Change Making Problem

- For memoization in Python:
- have a global dictionary for the costs and the best choice of coin (last_coin)
- Also, add the values of the coins in a list

$$
\begin{aligned}
& \text { last_coin }=\{0: 0\} \\
& \text { costs }=\{0: 0\} \\
& \text { values }=[1,3,5,7,8]
\end{aligned}
$$

The Change Making Problem

- Here is very simple Python code

```
def getChange(n):
    if n in costs:
        return costs[n]
    best = 100000
    bestcoin = 0
    for x in range(len(values)):
        if values[x] > n:
        break
        alternativeCost = getChange(n-values[x])+1
        if alternativeCost < best:
        best = alternativeCost
        bestcoin = values[x]
    costs[n] = best
    last_coin[n] = bestcoin
    return best
```


The Change Making Problem

- And here is the output
- Amount to make change for
- Number of coins needed
- Last coin used
- Example:
- For 20, use a 5 , left 15
- For 15 , use a 7 , left 8
- For 8, use 8

0	0	0
1	1	1
2	2	1
3	1	3
4	2	1
5	1	5
6	2	1
7	1	7
8	1	8
9	2	1
10	2	3
11	2	3
12	2	5
13	2	5
14	2	7
15	2	7
16	2	8
17	3	1
18	3	3
19	3	3
20	3	5

The Change Making Problem

- But we do not have this problem with normal coin sets
- US\$-cents: 1, 5, 10, 25, 100
- Euro-cents: 1, 5, 10, 20, 50, 100, 200

The Change Making Problem

- Cashier's Algorithm
- Always select the largest coin smaller or equal the current amount
- Will not always work
- Another example: US Postage Stamps before forever
- 1, 5, 25, 32, 100
- Make change for 121
- Cashier's algorithm: $100+5+5+5+5+1$
- Better choice 32+32+32+25

The Change Making Problem

- But sometimes the Cashier's Algorithm is the best
- Assume that we have coins of $1,5,10,20$, and 50
- Proof by induction that the cashier's algorithm always give the best change
- Represent the change as an array
- Coefficient i of array: number of i-th coins
- Example:

1	5	10	20	50
3	2	4	8	0

- one way of making change for 213

The Change Making Problem

- Proof:
- Assume $C=\left[c_{1}, c_{5}, c_{10}, c_{20}, c_{50}\right]$ is the result of the cashier's algorithm for an amount of
$c_{1}+c_{5} \cdot 5+c_{10} \cdot 10+c_{20} \cdot 20+c_{50} \cdot 50$
- Assume $A=\left[a_{1}, a_{5}, a_{10}, a_{20}, a_{50}\right]$ is an alternative with less coins for the same amount $a_{1}+a_{5} \cdot 5+a_{10} \cdot 10+a_{20} \cdot 20+a_{50} \cdot 50$ but

$$
a_{1}+a_{5}+a_{10}+a_{20}+a_{50}<c_{1}+c_{5}+c_{10}+c_{20}+c_{50}
$$

The Change Making Problem

- Proof:
- Want to show that $A=C$.

The Change Making Problem

- Proof:
- Lemma 1: An optimal solutions has not more than four pennies
- Otherwise replace with a 5 cent piece
- Lemma 2: An optimal solution has not more than one 10 cent piece
- Otherwise replace with a 20 cent piece
- Lemma 3: An optimal solution cannot have two twenty cent pieces and one 10 cent piece

- Otherwise replace with a 50 cent piece

The Change Making Problem

- Proof:
- Lemma 5: Maximum number of pennies in an optimal solution is four
- Follows from Lemma 1
- Lemma 6: If the optimal solution has only pennies and five cents, then the amount is at most nine
- Follows from Lemma 2 and Lemma 5

The Change Making Problem

- Lemma 7: The maximum amount for an optimal solution with only pennies, 5 cent and 10 cent pieces is 19
- Lemma 8: The maximum amount for an optimal solution with only 1 cent, 5 cent, 10 cent, and 20 cent pieces is 49

The Change Making Problem

- Proof:
- Assume that the number of 50 cent coins in A and C differ.
- Because of how C is defined, the number of 50 cent coins in A has to be lower $a_{50}<c_{50}$.
- However, the difference needs to be made up with coins of smaller value
- But an optimal solution cannot have more than 49 cents in smaller coins
- Contradiction

The Change Making Problem

- Proof:
- So, the number of 50 cent coins does not differ
- If there are $x 50$ cent coins, then look at the best solution for amount- x coins.
- C and A with the 50 cent coins removed are still two different solutions for the same amount
- Now apply the same argument to the 20 cent coins.
- Et cetera

The Change Making Problem

- We call the cashier's algorithm a greedy algorithm:
- We solve the problem by going to a smaller problem
- E.g. Making change for 134 cents.
- Lay out 50 cents
- Making change for 84 cents.
- At each step, we select something optimal

Greedy Algorithms

- Many algorithms run from stage to stage
- At each stage, they make a decision based on the information available
- A Greedy algorithm makes decisions
- At each stage, using locally available information, the greedy algorithm makes an optimal choice
- Sometimes, greedy algorithms give an overall optimal solution
- Sometimes, greedy algorithms will not result in an optimal solution but often in one good enough

Divisible Items Knapsack Problem

- Given a set of items S
- Each item has a weight $w(x)$
- Each item has a value $v(x)$
- Select a subset $M \subset S$
- Constraint: $\quad \sum_{x \in M} w(x)<W$
- Objective Function: $\quad \sum_{x \in M} v(x) \longrightarrow \max$

Divisible Items Knapsack Problem

- Order all items by impact
- $\quad \operatorname{impact}(x)=\frac{v(x)}{w(x)}$
- In order of impact (highest first), ask whether you want to include the item
- And you include it if the sum of the weights of the items already selected is smaller than W

Optimal Rental

- Set of activities $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Each activity has a start time and a finish time
- $0 \leq s_{i}<f_{i}<\infty$
- Each activity needs to use your facility
- Only one activity at a time
- Make the rental agreements that maximize the number of rentals

Optimal Rental

- Two activities a_{i} and a_{j} are compatible iff
- $\quad\left[s_{i}, f_{i}\right) \cap\left[s_{j}, f_{j}\right)=\varnothing$
- This means that activity $i<j$ finishes before activity j

Optimal Rental

- Example:

- A compatible set is $\left\{A_{1}, A_{5}, A_{8}, A_{10}\right\}$

- Another compatible set is $\left\{A_{3}, A_{9}\right\}$

Optimal Rental

- Optimal rental with a dynamic programming algorithm
- Subproblems: Define $S_{i k}$ to be the set of activities that start after a_{i} finishes and finish before a_{k} starts

i	12234556788910						
si	1302656151819						
fi	67912131518192021						
$S_{1,8}=\left\{a_{5}\right\}$							

Optimal Rental

- We want to find an optimal rental plan for $S_{i k}$
- Assume that there is an optimal solution that contains activity $a_{j} \in S_{i, k}$
- By selecting a_{j}, we need to decide what to do with the time before a_{j} starts and after a_{j} finishes
- These sets are $S_{i j}$ and $S_{j k}$

Optimal Rental

- Assume that a_{j} is part of an optimal solution $A_{i, k}$ for $S_{i, k}$
- Then $A_{i, k}$ is divided into the ones that end before a_{j} and the ones that start after a_{j}
- $A_{i, j}=A_{i, k} \cap S_{i, k} \quad A_{j, k}=A_{i, k} \cap S_{j, k}$
$A_{i, k}=A_{i, j} \cup\left\{a_{j}\right\} \cup A_{j, k}$

Optimal Rental

Optimal Rental

- Clearly, $A_{i, j}$ is an optimal solution for $S_{i, j}$
- $A_{j, k}$ is an optimal solution for $S_{j, k}$
- For if not, we could construct a better solution for $S_{i, k}$

Optimal Rental

- We can therefore solve recursively the problem for $S_{i, k}$ by looking at all possible activities for a_{j}
- Define $C[i, k]=$ Max number of compatible activities in $S_{i, k}$
- Then:

$$
C[i, k]=\max \left(0, \max \left(C[i, j]+C[j, k]+1 \mid a_{j} \in S_{i, k}\right)\right)
$$

- The 0 is necessary because there might be no activity in $S_{i, k}$

Optimal Rental

- The recursion leads to a nice dynamic programming problem

$$
C[i, k]=\max \left(0, \max \left(C[i, j]+C[j, k]+1 \mid a_{j} \in S_{i, k}\right)\right)
$$

Optimal Rental

- But can we do better?

Optimal Rental

- Start out with the initial problem
- Select the activity that finishes first
- this would be a_{1}
- This leaves most space for all other activities
- Call S_{1} the set of activities compatible with a_{1}
- These are those starting after a_{1}
- Similarly, call S_{k} the set of activities starting after a_{k}

Optimal Rental

- Theorem: For any non-empty problem S_{k} let a_{m} be the activity with the smallest end time. Then a_{m} is contained in an optimal solution
- Proof:
- Let A_{k} be a solution
- i.e. the maximum sized compatible subset in S_{k}
- Let $a_{1} \in A_{k}$ be the activity with earliest finish time
- If $a_{m}=a_{1}$ then we are done

Optimal Rental

- Theorem: For any non-empty problem S_{k} let a_{m} be the activity with the smallest end time. Then a_{m} is contained in an optimal solution
- Proof:
- Otherwise replace a_{1} with a_{m} in A_{k}
- $A_{k}^{\prime}=A_{k}-\left\{a_{1}\right\} \cup\left\{a_{m}\right\}$
- Since a_{m} is the first to finish, this is a set of compatible activities
- Therefore, there exists an optimal solution with a_{m}

Optimal Rental

- Result of the Theorem:
- We can find an optimal solution (but not necessarily all optimal solutions) by always picking the first one to finish.

Optimal Rental

- Example

| \boldsymbol{i} | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | 10 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| si | 1 | 3 | 0 | 2 | 6 | 5 | 6 | 15 | 18 | 19 |
| fi | 6 | 7 | 9 | 12 | 13 | 15 | 18 | 19 | 20 | 21 |

- Select a_{1}
- Exclude a_{2}, a_{3}, and a_{4} as incompatible
- Choose a_{5}, a_{8}, and a_{10} for the complete solution

Greedy Algorithms

- Greedy algorithms
- Determine the optimal substructure
- Develop a recursive solution
- Show that making the greedy choice is best
- Show that making the greedy choice leads to a similar subproblem
- Obtain a recursive algorithm
- Convert the recursive algorithm to an iterative algorithm

