Regular Expressions and DFAs

Thomas Schwarz, SJ

Regular Expressions and Deterministic Finite Automata

- Now, we need to show that every language accepted by a deterministic finite automaton is regular.
- Given a DFA $M=\left(\left\{q_{1}, \ldots, q_{n}\right\}, \Sigma, \delta, q_{1}, F\right)$
- Define $R_{i, j}^{k}$ as Set of strings that go from State i to State j without going through any state numbered higher than k
- We can define $R_{i, j}^{k}$ by recursion, as we will show
- $R_{i, i}^{0}=\left\{a \mid \delta\left(q_{i}, a\right)=q_{i}\right\} \cup\{\epsilon\}$
- $R_{i, j}^{0}=\left\{a \mid \delta\left(q_{i}, a\right)=q_{j}\right\}$ if $i \neq j$
- $R_{i, j}^{k}=R_{i, j}^{k-1}+R_{i, k}^{k-1} \cdot\left(R_{k, k}^{k-1}\right)^{+} \cdot R_{k, j}^{k-1}$

Regular Expressions and Deterministic Finite Automata

- Observation: $R_{i, j}^{k}$ is given by a regular expression
- Proof by induction on k
- Base: $k=0$
- First case $i \neq j$:
- $R_{i, j}^{0}$ is the set of strings accepted by going from State i to State j without going through any other State
- If there is no transition: $R_{i, j}^{0}=\varnothing$.

Regular Expressions and Deterministic Finite Automata

- Observation: $R_{i, j}^{k}$ is given by a regular expression
- Proof by induction on k
- Base: $k=0$
- First case $i \neq j$:
- $R_{i, j}^{0}$ is the set of strings accepted by going from State i to State j without going through any other State
- If there is a transition: $R_{i, j}^{0}=\mathbf{a}$.

Regular Expressions and Deterministic Finite Automata

- Observation: $R_{i, j}^{k}$ is given by a regular expression
- Proof by induction on k
- Base: $k=0$
- First case $i \neq j$:
- $R_{i, j}^{0}$ is the set of strings accepted by going from State i to State j without going through any other State
- If there are more transitions: $R_{i, j}^{0}=\mathbf{a}+\mathbf{b}+\ldots$.

Regular Expressions and Deterministic Finite Automata

- Observation: $R_{i, j}^{k}$ is given by a regular expression
- Proof by induction on k
- Base: $k=0$
- Second case $i=j$:
- $R_{i, i}^{0}$ is the set of strings accepted by going from State i to State j without going through any other State
- If there are no transitions: $R_{i, i}^{0}=\epsilon$

Regular Expressions and Deterministic Finite Automata

- Observation: $R_{i, j}^{k}$ is given by a regular expression
- Proof by induction on k
- Base: $k=0$
- Second case $i=j$:
- $R_{i, i}^{0}$ is the set of strings accepted by going from State i to State j without going through any other State
- If there are self-transitions: $R_{i, i}^{0}=\epsilon+\mathbf{a}+\mathbf{b}+\ldots$

Regular Expressions and Deterministic Finite Automata

- Observation: $R_{i, j}^{k}$ is given by a regular expression
- Proof by induction on k
- Induction step: $k \rightarrow>k+1$
- How can we get from State i to State j

Regular Expressions and Deterministic Finite Automata

- How can we get from State i to State j ?

Start

- Can go without touching k
- Can go to k without touching k, then zero, once, or many times from k to k without touching k in between, followed by going from k to j without touching k

Regular Expressions and Deterministic Finite Automata

- How can we get from State i to State j ?

- We read off:

$$
R_{i, j}^{k}=R_{i, j}^{k-1}+R_{i, k}^{k-1} \cdot R_{k, j}^{k-1}+R_{i, k}^{k-1} \cdot R_{k, k}^{k-1} \cdot R_{k, j}^{k-1}+R_{i, k}^{k-1} \cdot R_{k, k}^{k-1} \cdot R_{k, k}^{k-1} \cdot R_{k, j}^{k-1}+\ldots
$$

Regular Expressions and Deterministic Finite Automata

- How can we get from State i to State j ?

- $R_{i, j}^{k}=R_{i, j}^{k-1}+R_{i, k}^{k-1} \cdot\left(R_{k, k}^{k-1}\right)^{*} \cdot R_{k, j}^{k-1}$

Regular Expressions and Deterministic Finite Automata

- It follows that the language accepted by a DFA is regular:
- A string is accepted if it moves from the initial state to a final state

$$
\mathscr{L}(M)=\cup_{q_{j} \in \mathscr{F}} R_{1, j}^{n+1}=\sum_{q_{j} \in \mathscr{F}} \mathbf{r}_{1, j}^{n+1}
$$

Regular Expressions and Deterministic Finite Automata

- Example:

$$
\begin{aligned}
& r_{1,1}^{1}=\epsilon \\
& r_{1,2}^{1}=\mathbf{0} \\
& r_{1,3}^{0}=\mathbf{1} \\
& r_{2,1}^{1}=\mathbf{0} \\
& r_{2,2}^{1}=\epsilon \\
& r_{2,3}^{1}=\mathbf{1} \\
& r_{3,1}^{1}=\varnothing \\
& r_{3,2}^{1}=\mathbf{0}+\mathbf{1} \\
& r_{3,3}^{1}=\varnothing
\end{aligned}
$$

Regular Expressions and Deterministic Finite Automata

- Example:

$$
\begin{aligned}
& r_{1,1}^{2}=\epsilon \\
& r_{1,2}^{1}=\mathbf{0} \\
& r_{1,3}^{2}=\mathbf{1} \\
& r_{2,1}^{2}=\mathbf{0} \\
& r_{2,2}^{2}=\epsilon+\mathbf{0} \epsilon^{*} \mathbf{0}=\epsilon+\mathbf{0 0} \\
& r_{2,3}^{2}=\mathbf{1}+\mathbf{0} \epsilon^{*} \mathbf{1}=\mathbf{1}+\mathbf{0 1} \\
& r_{3,1}^{2}=\varnothing \\
& r_{3,2}^{2}=\mathbf{0}+\mathbf{1} \\
& r_{3,3}^{2}=\epsilon
\end{aligned}
$$

Regular Expressions and Deterministic Finite Automata

- Example:

$r_{1,1}^{3}=r_{1,1}^{2}+r_{1,2}^{3} r_{2,2}^{3} r_{2,1}^{2}=\epsilon+\mathbf{0}(\epsilon+\mathbf{0 0})^{*} \mathbf{0}=\epsilon+\mathbf{0}(\mathbf{0 0})^{*} \mathbf{0}=\epsilon+(\mathbf{0 0})^{*} \mathbf{0}=\mathbf{0 0} *$
$r_{1,2}^{3}=r_{1,2}^{2}+r_{1,2}^{2}\left(r_{2,2}^{2}\right)^{*} r_{2,2}^{2}=\mathbf{0}+\mathbf{0}(\mathbf{0 0})^{*} \epsilon=\mathbf{0}(\mathbf{0 0})^{*}$
$r_{1,3}^{3}=r_{1,3}^{2}+r_{1,2}^{2}\left(r_{2,2}^{2}\right) * r_{2,3}^{2}=\mathbf{1}+\mathbf{0}(\epsilon+\mathbf{0 0})^{*} \mathbf{1}=\mathbf{1}+\mathbf{0}(\mathbf{0 0})^{*} \mathbf{1}$

Regular Expressions and Deterministic Finite Automata

- Example:

$$
r_{2,1}^{3}=r_{2,1}^{2}+r_{2,2}^{2}\left(r_{2,2}^{2}\right) * r_{2,1}^{2}=\mathbf{0}+(\mathbf{0 0}) *(\mathbf{0 0}) * \mathbf{0}=(\mathbf{0 0}) * \mathbf{0}
$$

Regular Expressions and Deterministic Finite Automata

- Example:

$$
r_{2,2}^{3}=r_{2,2}^{2}+r_{2,2}^{2}\left(r_{2,2}^{2}\right) * r_{2,2}^{2}=(\mathbf{0 0})^{*}
$$

Regular Expressions and Deterministic Finite Automata

- Example:

$r_{2,3}^{3}=r_{2,3}^{2}+r_{2,2}^{2}\left(r_{2,2}^{2}\right) * r_{2,3}^{2}=(\mathbf{1}+\mathbf{0 1})+\mathbf{0 0}(\mathbf{0 0})^{*}(\mathbf{1}+\mathbf{0 1})==\mathbf{1}+\mathbf{0 1}+(\mathbf{0 0})^{+} \mathbf{1}+(\mathbf{0 0})^{+} \mathbf{0 1}$

Regular Expressions and Deterministic Finite Automata

- Example:

$r_{3,1}^{3}=r_{3,1}^{2}+r_{3,2}^{2}\left(r_{2,2}^{2}\right) * r_{2,1}^{2}=\varnothing+(\mathbf{0}+\mathbf{1})(\mathbf{0 0})^{*} \mathbf{0}=(\mathbf{0 0})^{+}+\mathbf{1}(\mathbf{0 0})^{*} \mathbf{0}$

Regular Expressions and Deterministic Finite Automata

- Example:

$r_{3,2}^{3}=r_{3,2}^{2}+r_{3,2}^{2}\left(r_{2,2}^{2}\right)^{*} r_{2,2}^{2}=(\mathbf{0}+\mathbf{1})+(\mathbf{0}+\mathbf{1})(\mathbf{0 0})^{*} \mathbf{0 0}=\mathbf{0}(\mathbf{0 0})^{*}+\mathbf{1}(\mathbf{0 0})^{*}$

Regular Expressions and Deterministic Finite Automata

- Example:

$$
\begin{aligned}
r_{3,3}^{3} & =r_{3,3}^{2}+r_{3,2}^{2}\left(r_{2,2}^{2}\right) * r_{2,3}^{2}=\epsilon+(\mathbf{0}+\mathbf{1})(\mathbf{0 0}) *(\mathbf{1}+\mathbf{0 1}) \\
& =\epsilon+\mathbf{0}(\mathbf{0 0}) * \mathbf{1}+\mathbf{1}(\mathbf{0 0}) * \mathbf{1}+\mathbf{0}(\mathbf{0 0}) * \mathbf{0 1}+\mathbf{1}(\mathbf{0 0}) * \mathbf{0 1} \\
& =\epsilon+\mathbf{0}(\mathbf{0 0}) * \mathbf{1}+\mathbf{1}(\mathbf{0 0}) * \mathbf{1}+(\mathbf{0 0})^{+} \mathbf{1}+\mathbf{1}(\mathbf{0 0}) * \mathbf{0 1}
\end{aligned}
$$

Regular Expressions and Deterministic Finite Automata

- Example:

$$
\mathscr{L}(M)=r_{1,2}^{4}+r_{1,3}^{4}=r_{1,2}^{3}+r_{1,3}^{3}\left(r_{3,3}^{3}\right) * r_{3,2}^{3}+r_{1,3}^{3}+r_{1,3}^{3}\left(r_{3,3}^{3}\right) * r_{3,3}
$$

$$
\left.=\mathbf{0}(\mathbf{0})^{*}+(\mathbf{1}+\mathbf{0}(\mathbf{0 0}) * \mathbf{1})(\epsilon+\mathbf{0}(\mathbf{0}))^{*} \mathbf{1}+\mathbf{1}(\mathbf{0})^{*} \mathbf{1}^{1}+(\mathbf{0})^{+} \mathbf{1}+\mathbf{1}(\mathbf{0 0})^{*} \mathbf{0 1}\right)^{*} \mathbf{0}(\mathbf{0 0})^{*}+\mathbf{1}(\mathbf{0 0})^{*}
$$

$$
\left.\left.+\mathbf{1}+\mathbf{0}(\mathbf{0} 0) * \mathbf{1}+(\mathbf{1}+\mathbf{0}(\mathbf{0}))^{*} \mathbf{1}\right)\left(\epsilon+\mathbf{0}(\mathbf{0 0})^{*} \mathbf{1}+\mathbf{1}(\mathbf{0})\right)^{*} \mathbf{1}+(\mathbf{0 0})^{+} \mathbf{1}+\mathbf{1}(\mathbf{0}) * \mathbf{0 1}\right)^{*} \mathbf{0}(\mathbf{0} 0)^{*}+\mathbf{1}(\mathbf{0 0})^{*}
$$

Finite Automata with Output

- Moore machines
- Whenever the machine is in state i it outputs a symbol depending on the state
- Example:
- A Moore machine that calculates the remainder modulo 3 of a binary number
- To derive the formula, consider

$$
\begin{aligned}
a . x \quad(\bmod 3) & \equiv 2 a+x \quad(\bmod 3) \\
& \equiv\left(\begin{array}{ll}
2 a & (\bmod 3))+\left(\begin{array}{ll}
x & (\bmod 3)
\end{array}\right) \\
& \equiv 2(a \quad(\bmod 3))+\left(\begin{array}{ll}
x & (\bmod 3)
\end{array}\right)
\end{array},=\right.\text { and }
\end{aligned}
$$

Finite Automata with Output

$a(\bmod 3)$	$x(\bmod 3)$	$a \cdot x(\bmod 3)$
0	0	0
0	1	1
1	0	2
1	1	0
2	0	1
2	1	2

Finite Automata with Output

- Mealy Machines
- Output depends on the current state and the transition

Finite Automata with Output

- It can be shown that Mealy and Moore machines are equivalent

