Regular Expressions and DFAs

Thomas Schwarz, SJ

- Now, we need to show that every language accepted by a deterministic finite automaton is regular.
 - Given a DFA $M = (\{q_1, \ldots, q_n\}, \Sigma, \delta, q_1, F)$
 - Define $R_{i,j}^k$ as Set of strings that go from State i to State j without going through any state numbered higher than k
 - We can define $R_{i,j}^k$ by recursion, as we will show
 - $R_{i,i}^0 = \{a \mid \delta(q_i, a) = q_i\} \cup \{\epsilon\}$
 - $R_{i,j}^0 = \{a \mid \delta(q_i, a) = q_j\} \text{ if } i \neq j$

•
$$R_{i,j}^k = R_{i,j}^{k-1} + R_{i,k}^{k-1} \cdot \left(R_{k,k}^{k-1}\right)^+ \cdot R_{k,j}^{k-1}$$

- Observation: $R_{i,j}^k$ is given by a regular expression
 - Proof by induction on k
 - Base: *k* = 0

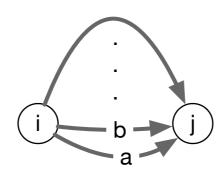
Start -----

- First case $i \neq j$:
 - *R*⁰_{*i,j*} is the set of strings accepted by going from State *i* to State *j* without going through any other State
 - If there is no transition: $R_{i,j}^0 = \emptyset$.

(i)

- Observation: $R_{i,j}^k$ is given by a regular expression
 - Proof by induction on k
 - Base: *k* = 0
 - First case $i \neq j$:
 - *R*⁰_{*i,j*} is the set of strings accepted by going from State *i* to State *j* without going through any other State
 - If there is a transition: $R_{i,j}^0 = \mathbf{a}$.

- Observation: $R_{i,j}^k$ is given by a regular expression
 - Proof by induction on k
 - Base: *k* = 0
 - First case $i \neq j$:
 - $R_{i,j}^0$ is the set of strings accepted by going from State *i* to State *j* without going through any other State
 - If there are more transitions: $R_{i,j}^0 = \mathbf{a} + \mathbf{b} + \dots$



- Observation: $R_{i,j}^k$ is given by a regular expression
 - Proof by induction on k

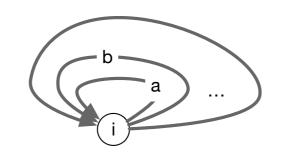
Start ----

- Base: *k* = 0
 - Second case i = j:
 - *R*⁰_{*i*,*i*} is the set of strings accepted by going from State *i* to State *j* without going through any other State

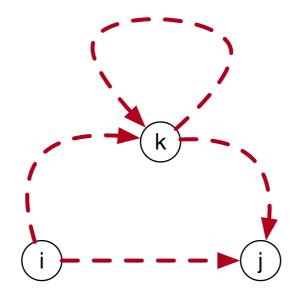
í

• If there are no transitions: $R_{i,i}^0 = \epsilon$

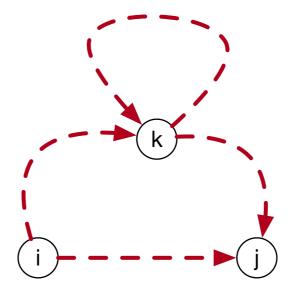
- Observation: $R_{i,j}^k$ is given by a regular expression
 - Proof by induction on k
 - Base: *k* = 0
 - Second case i = j:
 - *R*⁰_{*i*,*i*} is the set of strings accepted by going from State *i* to State *j* without going through any other State
 - If there are self-transitions: $R_{i,i}^0 = \epsilon + \mathbf{a} + \mathbf{b} + \dots$



- Observation: $R_{i,j}^k$ is given by a regular expression
 - Proof by induction on k
 - Induction step: $k \rightarrow k+1$
 - How can we get from State *i* to State *j*

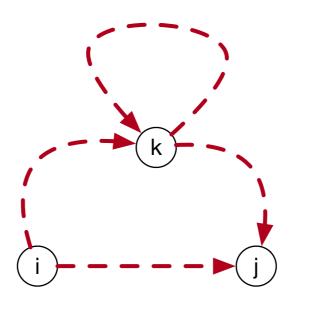


• How can we get from State *i* to State *j* ?



- Can go without touching k
- Can go to k without touching k, then zero, once, or many times from k to k without touching k in between, followed by going from k to j without touching k

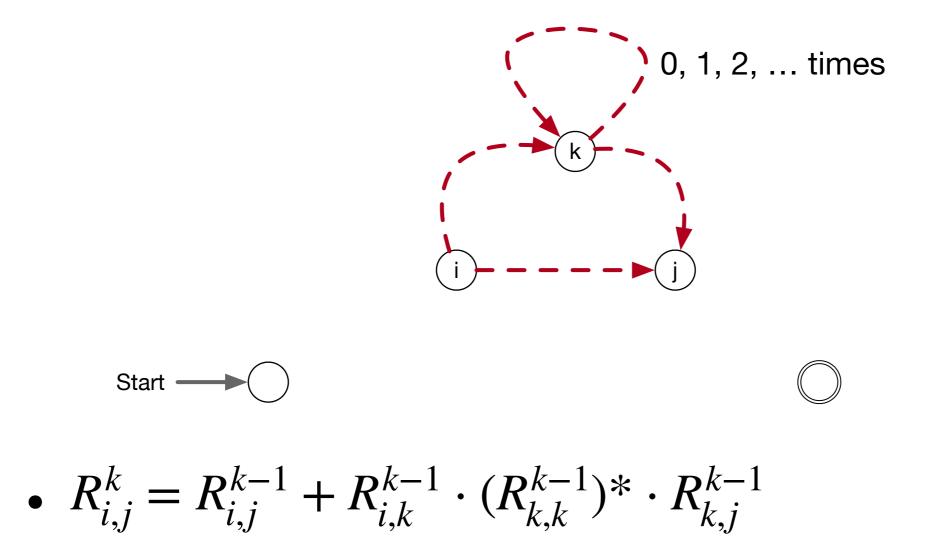
How can we get from State i to State j ?



 \bigcirc

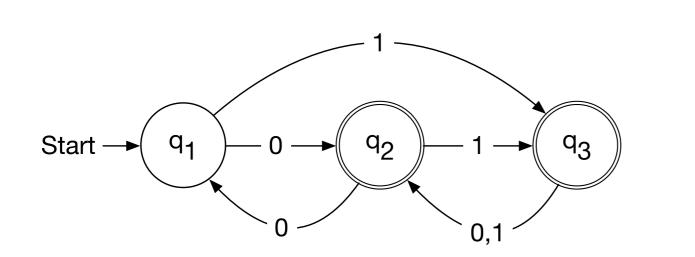
• We read off: $R_{i,j}^{k} = R_{i,j}^{k-1} + R_{i,k}^{k-1} \cdot R_{k,j}^{k-1} + R_{i,k}^{k-1} \cdot R_{k,k}^{k-1} + R_{i,k}^{k-1} \cdot R_{k,k}^{k-1} \cdot R_{k,k}^{k-1} \cdot R_{k,j}^{k-1} + \dots$

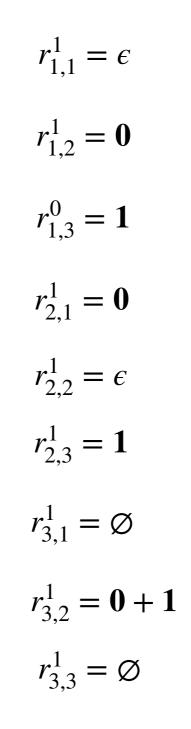
• How can we get from State *i* to State *j* ?

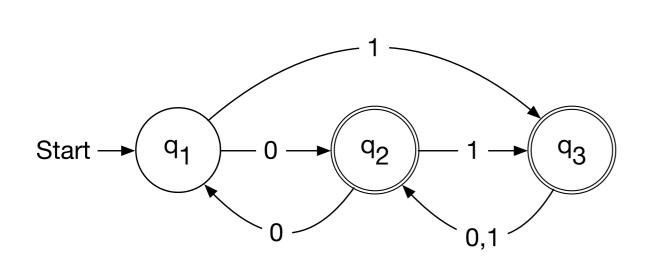


- It follows that the language accepted by a DFA is regular:
 - A string is accepted if it moves from the initial state to a final state

$$\mathscr{L}(M) = \bigcup_{q_j \in \mathscr{F}} R_{1,j}^{n+1} = \sum_{q_j \in \mathscr{F}} \mathbf{r}_{1,j}^{n+1}$$







$$r_{1,1}^{2} = \epsilon$$

$$r_{1,2}^{1} = \mathbf{0}$$

$$r_{1,3}^{2} = \mathbf{1}$$

$$r_{2,1}^{2} = \mathbf{0}$$

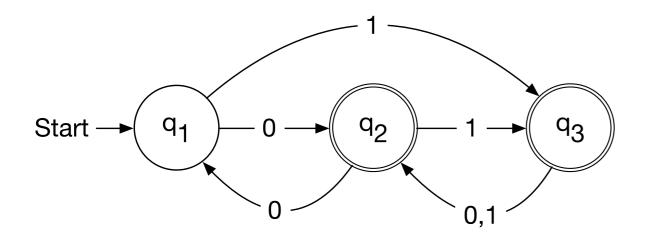
$$r_{2,2}^{2} = \epsilon + \mathbf{0}\epsilon^{*}\mathbf{0} = \epsilon + \mathbf{0}\mathbf{0}$$

$$r_{2,3}^{2} = \mathbf{1} + \mathbf{0}\epsilon^{*}\mathbf{1} = \mathbf{1} + \mathbf{0}\mathbf{1}$$

$$r_{3,1}^{2} = \emptyset$$

$$r_{3,2}^{2} = \mathbf{0} + \mathbf{1}$$

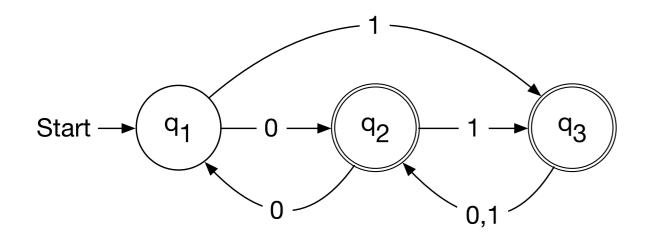
$$r_{3,3}^{2} = \epsilon$$



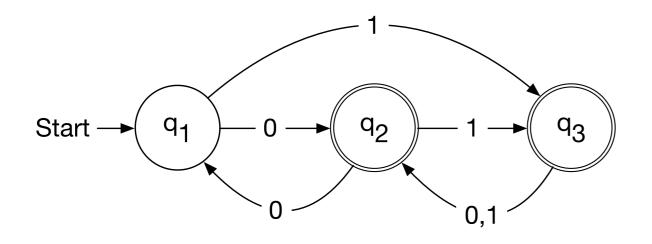
$$r_{1,1}^3 = r_{1,1}^2 + r_{1,2}^3 r_{2,2}^3 r_{2,1}^2 = \epsilon + \mathbf{0}(\epsilon + \mathbf{00}) * \mathbf{0} = \epsilon + \mathbf{0}(\mathbf{00}) * \mathbf{0} = \epsilon + (\mathbf{00}) * \mathbf{0} = \mathbf{00} * \mathbf{0}$$

$$r_{1,2}^3 = r_{1,2}^2 + r_{1,2}^2(r_{2,2}^2)^* r_{2,2}^2 = \mathbf{0} + \mathbf{0}(\mathbf{00})^* \epsilon = \mathbf{0}(\mathbf{00})^*$$

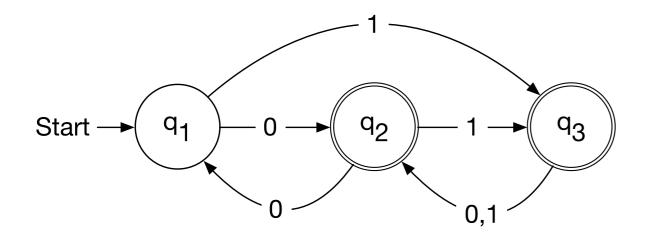
$$r_{1,3}^3 = r_{1,3}^2 + r_{1,2}^2(r_{2,2}^2)^* r_{2,3}^2 = \mathbf{1} + \mathbf{0}(\epsilon + \mathbf{00})^* \mathbf{1} = \mathbf{1} + \mathbf{0}(\mathbf{00})^* \mathbf{1}$$



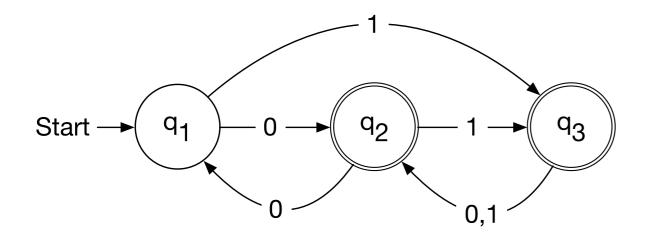
$$r_{2,1}^3 = r_{2,1}^2 + r_{2,2}^2 (r_{2,2}^2)^* r_{2,1}^2 = \mathbf{0} + (\mathbf{00})^* (\mathbf{00})^* \mathbf{0} = (\mathbf{00})^* \mathbf{0}$$



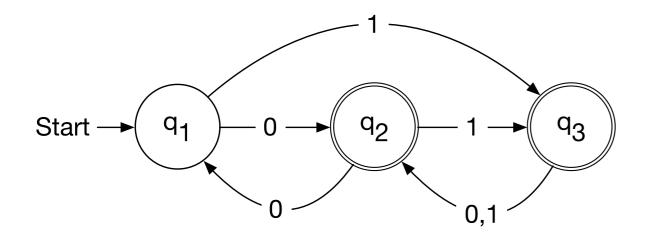
$$r_{2,2}^3 = r_{2,2}^2 + r_{2,2}^2 (r_{2,2}^2)^* r_{2,2}^2 = (\mathbf{00})^*$$



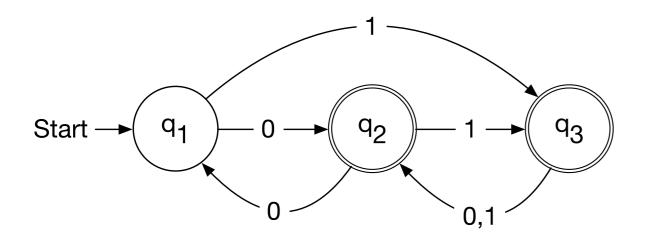
$$r_{2,3}^3 = r_{2,3}^2 + r_{2,2}^2(r_{2,2}^2)^* r_{2,3}^2 = (1+01) + 00(00)^* (1+01) = = 1 + 01 + (00)^+ 1 + (00)^+ 01$$



$$r_{3,1}^3 = r_{3,1}^2 + r_{3,2}^2(r_{2,2}^2) * r_{2,1}^2 = \emptyset + (\mathbf{0} + \mathbf{1})(\mathbf{00}) * \mathbf{0} = (\mathbf{00})^+ + \mathbf{1}(\mathbf{00}) * \mathbf{0}$$

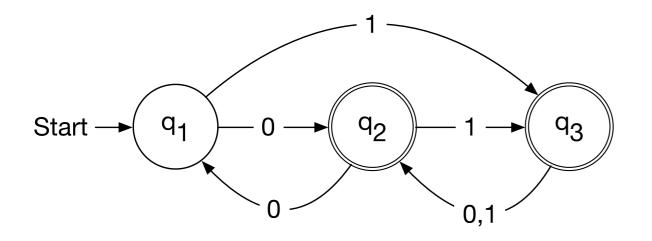


$$r_{3,2}^3 = r_{3,2}^2 + r_{3,2}^2(r_{2,2}^2) * r_{2,2}^2 = (\mathbf{0} + \mathbf{1}) + (\mathbf{0} + \mathbf{1})(\mathbf{00}) * \mathbf{00} = \mathbf{0}(\mathbf{00}) * + \mathbf{1}(\mathbf{00}) * \mathbf{00} = \mathbf{0}(\mathbf{00}) * \mathbf{0} = \mathbf{0}(\mathbf{0}) * \mathbf{0} = \mathbf{0}(\mathbf{$$



$$r_{3,3}^3 = r_{3,3}^2 + r_{3,2}^2(r_{2,2}^2)^* r_{2,3}^2 = \epsilon + (0+1)(00)^* (1+01)$$
$$= \epsilon + 0(00)^* 1 + 1(00)^* 1 + 0(00)^* 01 + 1(00)^* 01$$
$$= \epsilon + 0(00)^* 1 + 1(00)^* 1 + (00)^+ 1 + 1(00)^* 01$$

• Example:



$$\mathscr{L}(M) = r_{1,2}^4 + r_{1,3}^4 = r_{1,2}^3 + r_{1,3}^3(r_{3,3}^3)^* r_{3,2}^3 + r_{1,3}^3 + r_{1,3}^3(r_{3,3}^3)^* r_{3,3}$$

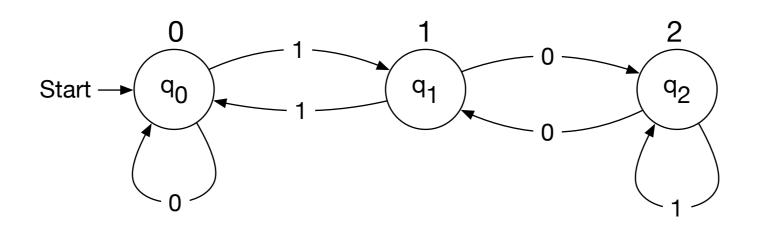
 $= 0(00)^{*} + (1 + 0(00)^{*}1) (\epsilon + 0(00)^{*}1 + 1(00)^{*}1 + (00)^{+}1 + 1(00)^{*}01)^{*} 0(00)^{*} + 1(00)^{*}$

 $+1+0(00)*1+\left(1+0(00)*1\right)\left(\epsilon+0(00)*1+1(00)*1+(00)*1+1(00)*01\right)^*0(00)*+1(00)*000$

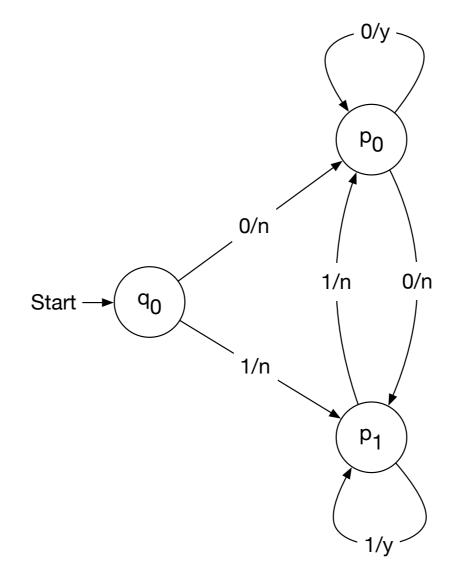
- Moore machines
 - Whenever the machine is in state *i* it outputs a symbol depending on the state
 - Example:
 - A Moore machine that calculates the remainder modulo 3 of a binary number
 - To derive the formula, consider

$$a.x \pmod{3} \equiv 2a + x \pmod{3}$$
$$\equiv \left(2a \pmod{3}\right) + \left(x \pmod{3}\right)$$
$$\equiv 2\left(a \pmod{3}\right) + \left(x \pmod{3}\right)$$

$a \pmod{3}$	$x \pmod{3}$	$a.x \pmod{3}$
0	0	0
0	1	1
1	0	2
1	1	0
2	0	1
2	1	2



- Mealy Machines
 - Output depends on the current state and the transition



 It can be shown that Mealy and Moore machines are equivalent