Regular Expressions Worksheet:

(1) Given the following two languages over $\Sigma=\{0,1,2\},$ $L_1=\{\epsilon,0,1\}$ and $L_2=\{2\},$ determine :

 $L_{1} + L_{2}$ $L_{1} \cdot L_{2}$ L_{1}^{0} $L_{2} \cdot L_{1}$ L_{2}^{2} L_{1}^{2} L_{1}^{3} L_{1}^{n}

(2) Describe the following regular expressions as sets.

1 * 0 * (0 + 1)⁺ 01*0 (101) *

Solutions:

 $L_{1} + L_{2} = \{\epsilon, 0, 1, 2\}$ $L_{1} \cdot L_{2} = \{2, 02, 12\}$ $L_{1}^{0} = \{\epsilon\}$ $L_{2} \cdot L_{1} = \{2, 20, 21\}$ $L_{2}^{2} = \{22\}$ $L_{1}^{2} = \{\epsilon, 0, 1, 00, 01, 10, 11\}$ $L_{1}^{3} = \{\epsilon, 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, 100, 101, 110\}$

 $L_1^n = \{ \text{all strings in } \{0,1\} \text{ of length up to } n \}.$ You see this by induction.

 $1\,{}^*\,0\,{}^*$ $\,$ The set of all finite strings that starts out with zero or more ones and finishes with zero or more zeroes

 $(0+1)^+$ The set of all finite strings with letters 0 or 1, the empty string not included

 $01*0 = \{00,010,0110,01110,\dots\}$ The set of all finite strings that start out with a 0, followed by none of more letters 1, followed by a final 0

 $(101)^* = \{\epsilon, 101, 101101, 101101101, \ldots\}$