Thomas Schwarz, SJ

- Two related concepts:
 - Used for searching:
 - Module re in Java and Python, regex in C++
 - In theoretical computer science:
 - A way to describe a large set of languages
 - Used e.g. in compiler theory
 - Nota bene: Regular expressions as implemented in most regular expression packets are more powerful than regular expressions as described here

- Theory of Computation can be based on the notion of a language
 - Imagine a language to be with which we can calculate
 - Fortunately, this is quite intuitive if you do not mind "abstract nonsense".

- Consists of finite length strings over a finite length alphabet Σ .
- Think about a C-program:
 - Written with characters that can be produced by an English keyboard
- Set of finite length strings over Σ is called Σ^*

 Regular expressions describe subset of the set of finite length strings

- Given languages (subsets of Σ^*) we can define operations
 - Concatenation: (with . denoting concatenation of strings)

 $L_1, L_2 \subset \Sigma^* : L_1 \cdot L_2 := \{ x \, . \, y \, | \, x \in L_1, y \in L_2 \}$

- Powers: defined inductively
 - $L \subset \Sigma^*$: $L^0 = \{\epsilon\}$ (set with empty string)

•
$$L^1 = L$$

•
$$L^{n+1} = L^n \cdot L$$

- The Kleene Closure is for $L \subset \Sigma^*$:
 - $L^* = \bigcup_{i \in \mathbb{N}} L^i$
- This is the set of all strings that can be formed by concatenating elements in *L*
 - It includes the empty string ϵ

- Regular expressions describe "regular" languages over a finite alphabet Σ
- They are defined inductively
 - The empty set \emptyset is a regular expression
 - The empty string ϵ is a regular expression
 - And these things are different

- Singletons are regular expressions:
 - Let $a \in \Sigma^*$. We define a regular expression **a** that stands for the set $\{a\}$.
 - It is customary to denote the regular expression in bold-face to distinguish it from the element, but not everyone does that

- If *r* and *s* are regular expressions denoting the sets *R* and *S* respectively, then the following are also regular expressions:
 - r + s for $R \cup S$ (union)
 - rs for $R \cdot S$ (concatenation)
 - r^* for R^* (clean closure)

Regular Expression Examples

- Let $\Sigma = \{0,1\}$
- **01** is $\{01\}$, the set consisting of the string 01.
- 0 + 1 is $\{0,1\}$, the set consisting of the two strings 0 and 1
- $(\mathbf{0} + \mathbf{1}) \cdot \mathbf{0} \cdot \mathbf{1} \cdot (\mathbf{0} + \mathbf{1})$ is the set {0010,0011,1010,1011}
- $\mathbf{1}^* = \{\epsilon, 1, 11, 111, 111, 111, \dots\}$ the set of strings that can be written with a finite number of ones, including none
- $1^* \cdot 0 \cdot 1^*$, the set of strings with any number of ones, but exactly one zero.

Regular Expressions Examples

- As an abbreviation, we use $L^+ = \bigcup_{i=1...\infty} L^i$
 - This just excludes the empty string $\boldsymbol{\epsilon}$
- $1^+\cdot 00\cdot 1\,^*$: All strings that start out with at least one one, followed by a double zero, followed by none or several ones
- **01**⁺ = {01,011,0111,01111,...} : all strings that consists of a single 0 followed by at least one one
- $(01)^+ = \{01,0101,010101,01010101,\dots\}$: all strings that start out with a zero, followed by a 1, followed possibly by another zero followed by a one, etc.