Worksheet: DFA and NFA

Problem 1:

Given the following DFA

- (1) Determines its transition table
- (2) What is the state after processing 00011
- (3) Give the shortest length strings that are accepted by the DFA starting with 1 and then starting with 0

(4) If we reverse the arrows (e.g. there would be a transition on 1 from C to A), would we have a DFA.

Problem 2:

Given the following NFA:

- (1) Explain why this is not a DFA
- (2) Replace this NFA with an equivalent DFA
- (3) What are the strings accepted by this NFA

Problem 3:

Convert the following NFA to a DFA

Solutions

Problem 1

State	0	1
А	В	С
В	А	E
С	D	Е
D	В	E
E	E	С

(2) A -> B -> A -> B -> E -> C
(3) "11", "01"
(4) No, there would be three transitions on 1 going out from E and there would be no transition on 0 from C (among other problems)

Problem 2

This is not a DFA because there is no transition from State D on a 0 or a 1.

The next-states diagram is very simple:

State	0	1
{A}	{A}	{B}
{B}	{B}	{C}
{C}	{C}	{D}
{D}	Ø	Ø
Ø	Ø	Ø

This means, we just add one state reflecting the empty set.

This DFA accepts strings with exactly three 1.

Problem 3:

State	0	1
{A}	Ø	{B,C}
Ø	Ø	Ø
{B,C}	{D}	{D}
{D}	{A}	Ø

This DFA will accept strings 10 and 11, and all strings that start with them followed by a pattern 01& repeated arbitrarily many times. Here & stands for either 0 or 1.