Divide and Conquer

Algorithms

Divide and Conquer

- Generic recipe for many solutions:
- Divide the problem into two or more smaller instances of the same problem
- Conquer the smaller instances using recursion (or a base case)
- Combine the answers to solve the original problem

Integer Multiplication

- Assume we want to multiply two n-bit integers with n a power of two
- Divide: break the integers into two n/2-bit integers

$$
\begin{aligned}
& x=2^{\frac{n}{2}} x_{L}+x_{R} \\
& y=2^{\frac{n}{2}} y_{L}+y_{R}
\end{aligned}
$$

\square

Integer Multiplication

- Conquer: Solve the problem of multiplying of $n / 2$ bit integers by recursion or a base case for $n=1, n=2$, or $n=4$

$$
\begin{aligned}
& x=2^{\frac{n}{2}} x_{L}+x_{R} \\
& y=2^{\frac{n}{2}} y_{L}+y_{R}
\end{aligned}
$$

\square

$$
\begin{array}{llll}
x_{L} \cdot y_{L} & x_{L} \cdot y_{R} & x_{R} \cdot y_{L} & x_{R} \cdot y_{R}
\end{array}
$$

Integer Multiplication

- Now combine:
- In the naïve way:

$$
\begin{aligned}
x \cdot y & =\left(x_{L} \cdot 2^{\frac{n}{2}}+x_{R}\right) \cdot\left(y_{L} \cdot 2^{\frac{n}{2}}+y_{R}\right) \\
& =x_{L} \cdot y_{L} \cdot 2^{n}+\left(x_{L} \cdot y_{R}+x_{R} \cdot y_{L}\right) \cdot 2^{\frac{n}{2}}+x_{R} \cdot y_{R}
\end{aligned}
$$

Integer Multiplication

$$
\begin{aligned}
x \cdot y & =\left(x_{L} 2^{\frac{n}{2}}+x_{R}\right) \cdot\left(y_{L} 2^{\frac{n}{2}}+y_{R}\right) \\
& =x_{L} \cdot y_{L} 2^{n}+\left(x_{L} \cdot y_{R}+x_{R} \cdot y_{L}\right) \cdot 2^{\frac{n}{2}}+x_{R} \cdot y_{R}
\end{aligned}
$$

- We count the number of multiplications
- Multiplying by powers of 2 is just shifting, so they do not count
- $T(n)$ number of bit multiplications for integers with 2^{n} bits:

$$
T(0)=1
$$

- Recursion:

$$
T(n+1)=4 T(n)
$$

Integer Multiplication

- Solving the recursion

$$
\begin{aligned}
& T(0)=1 \\
& T(n+1)=4 T(n)
\end{aligned}
$$

- Intuition:

$$
T(n)=4 T(n-1)=4^{2} T(n-2)=4^{3} T(n-3)=\ldots=4^{n} T(0)=4^{n}
$$

Integer Multiplication

- Proposition: $T(n)=4^{n}$
- Proof by induction:
- Induction base:

$$
T(0)=1=4^{0}
$$

- Induction step: Assume $T(n)=4^{n-1}$. Show $T(n+1)=4^{n}$
- Proof:

$$
\begin{aligned}
T(n) & =4 T(n-1) \text { Recursion Equation } \\
& =4 \times 4^{n-1} \text { Induction Assumption } \\
& =4^{n}
\end{aligned}
$$

Integer Multiplication

- Since the number of bits is $m=2^{n}$
- Number of multiplications is

$$
S(m)=T(n)=4^{n}=\left(2^{n}\right)^{n}=m^{2}
$$

- This is not better than normal multiplication

Integer Multiplication

- Now combine:
- Instead: $x \cdot y=\left(x_{L} 2^{\frac{n}{2}}+x_{R}\right) \cdot\left(y_{L} 2^{\frac{n}{2}}+y_{R}\right)$

$$
=x_{L} \cdot y_{L} \cdot 2^{n}+\left(x_{L} \cdot y_{R}+x_{R} \cdot y_{L}\right) \cdot 2^{\frac{n}{2}}+x_{R} \cdot y_{R}
$$

- Use $\left(x_{L} \cdot y_{R}+x_{R} \cdot y_{L}\right)=\left(x_{L}+x_{R}\right) \cdot\left(y_{L}+y_{R}\right)-x_{L} \cdot y_{L}-x_{R} \cdot y_{R}$
- This reuses two multiplications that are already used

Integer Multiplication

- We need to deal with the potential overflow in calculating

$$
\left(x_{L}+x_{R}\right) \cdot\left(y_{L}+y_{R}\right)
$$

Integer Multiplication

- Now, we only do three multiplications of 2^{n} bit numbers in order to multiply two 2^{n+1} bit numbers
- The recursion becomes

$$
T(0)=1 \quad T(n+1)=3 T(n)
$$

Integer Multiplication

- Solving the recurrence $T(0)=1 \quad T(n+1)=3 T(n)$
- Heuristics:

$$
T(n)=3 T(n-1)=3^{2} T(n-2)=\ldots=3^{n} T(0)=3^{n}
$$

Integer Multiplication

- As before prove exactly using induction

Integer Multiplication

- The multiplication of two $m=2^{n}$-bit numbers takes

$$
\begin{aligned}
S(m) & =T(n) \\
& =3^{n} \\
& =3^{\log _{2}(m)} \\
& =\exp \left(\log \left(3^{\log _{2}(m)}\right)\right) \\
& =\exp \left(\log _{2} m \log 3\right) \\
& =\exp \left(\log m \log 3 \frac{1}{\log 2}\right) \\
& =\exp \left(\log \left(m^{\log _{2} 3}\right)\right. \\
& =m^{\log _{2} 3}
\end{aligned}
$$

Integer Multiplication

- This way, multiplication of m-bit numbers takes $m^{1.58496}$ bit multiplications

Integer Multiplication

- Can be used for arbitrary length integer multiplication
- Base case is 32 or 64 bits
- But can still do better using Fast Fourier Transformation

Binary Search

- Given an array of ordered integers, a pointer to the beginning and to the end of a portion of the array, decide whether an element is in the slice
- Search(array, beg, end, element)
array

Binary Search

- Divide: Determine the middle element. This divides the array into two subsets
- Conquer: Compare the element with the middle element. If it is smaller, find out whether the element is in the left half, otherwise, whether the element is in the right half
- Combine: Just return the answer to the one question

Binary Search

```
def binary_search(array, beg, end, key):
    if beg >= end:
        return False
    mid = (beg+end)//2
    if array[mid]==key:
        return True
    elif array[mid] > key:
        return binary_search(array, beg, mid, key)
    else:
        return binary_search(array, mid+1, end, key)
test = [2, 3, 5, 6, 12, 15, 17, 19, 21, 23, 27, 29,
    31, 33, 35, 39, 41]
print(binary_search(test, 0, len(test), 21))
print(binary_search(test, 0, len(test), 22))
```


Binary Search

- Let $T(n)$ be the runtime of binary_search on a subarray with n elements
- Recursion: There is a constant c such that

$$
\begin{gathered}
T(1) \leq c \\
T(n) \leq T(n / / 2)+c
\end{gathered}
$$

Binary Search

- Solving the recursion

$$
\begin{aligned}
T(n) & \leq T(n / / 2)+c \\
\leq & T(n / / 4)+2 c \\
& \cdots \\
& \leq T\left(n / / 2^{m}\right)+m c
\end{aligned}
$$

- If $m \geq \log _{2} n$ then $T(n) \leq T(1)+m c=(m+1) c$

Binary Search

- With other words, binary search on n elements takes time

$$
\propto \log _{2}(n)
$$

Strassen Multiplication

- Definition of Matrix Multiplication
- $\left(a_{i, j}\right)_{\substack{1 \leq i \leq m \\ 1 \leq j \leq n}} \cdot\left(b_{j, k}\right)_{\substack{1 \leq j \leq n \\ 1 \leq k \leq p}}=\left(\sum_{j=1}^{n} a_{i, j} b_{j, k}\right)_{\substack{1 \leq i \leq m \\ 1 \leq k \leq p}}$

Strassen Multiplication

- Cost of definition:
- n^{2} multiplications for all $m k$ elements in the product
- Square $n \times n$ matrices: n^{4} elements

Strassen Multiplication

- Divide and conquer: Assume $n=2^{r}$ is a power of two.
- We can use the following theorem:
- Break each matrix into four submatrices of size $2^{r-1} \times 2^{r-1}$ and calculate
$\cdot\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right) \cdot\left(\begin{array}{ll}B_{11} & B_{12} \\ B_{21} & B_{22}\end{array}\right)=\left(\begin{array}{ll}A_{11} B_{11}+A_{12} B_{21} & A_{11} B_{21}+A_{12} B_{22} \\ A_{21} B_{11}+A_{22} B_{21} & A_{21} B_{21}+A_{22} B_{22}\end{array}\right)$

Strassen Multiplication

- As is, a divide and conquer algorithm gives us 8 multiplication of matrices half the size.
- Let $m(n)$ be the number of multiplications needed to multiply two $2^{n} \times 2^{n}$ matrices using divide and conquer
- Obviously: $m(1)=1$
- Recursion: $m(n+1)=8 m(n)$

Strassen Multiplication

- Claim: $m(n)=2^{3 n}$
- Proof: Induction base: $m(0)=1=2^{3 \cdot 0}$
- Induction step:
- Hypothesis: $m(n)=2^{3 n}$
- To show: $m(n+1)=2^{3(n+1)}$
- Proof:

$$
m(n+1)=8 m(n)=8 \cdot 2^{3 n}=2^{3} \cdot 2^{3 n}=2^{3 n+3}=2^{3(n+1)}
$$

Strassen Multiplication

- That is the same as the normal algorithm!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Strassen Multiplication

- Strassen: Can use 7 matrix multiplications to calculate all eight products
- $\mathbf{M}_{1}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{2,2}\right)$
- $\mathbf{M}_{2}:=\left(\mathbf{A}_{2,1}+\mathbf{A}_{2,2}\right) \mathbf{B}_{1,1}$
- $\mathbf{M}_{3}:=\mathbf{A}_{1,1}\left(\mathbf{B}_{1,2}-\mathbf{B}_{2,2}\right)$
- $\mathbf{M}_{4}:=\mathbf{A}_{2,2}\left(\mathbf{B}_{2,1}-\mathbf{B}_{1,1}\right)$
- $\mathbf{M}_{5}:=\left(\mathbf{A}_{1,1}+\mathbf{A}_{1,2}\right) \mathbf{B}_{2,2}$
- $\mathbf{M}_{6}:=\left(\mathbf{A}_{2,1}-\mathbf{A}_{1,1}\right)\left(\mathbf{B}_{1,1}+\mathbf{B}_{1,2}\right)$
- $\mathbf{M}_{7}:=\left(\mathbf{A}_{1,2}-\mathbf{A}_{2,2}\right)\left(\mathbf{B}_{2,1}+\mathbf{B}_{2,2}\right)$

Strassen Multiplication

- Then can get all the submatrices on the right:
- $\mathbf{C}_{1,1}=\mathbf{M}_{1}+\mathbf{M}_{4}-\mathbf{M}_{5}+\mathbf{M}_{7}$
- $\mathbf{C}_{1,2}=\mathbf{M}_{3}+\mathbf{M}_{5}$
- $\mathbf{C}_{2,1}=\mathbf{M}_{2}+\mathbf{M}_{4}$
- $\mathbf{C}_{2,2}=\mathbf{M}_{1}-\mathbf{M}_{2}+\mathbf{M}_{3}+\mathbf{M}_{6}$

Strassen Multiplication

- Now the recurrence becomes
- $m(n+1)=7 m(n), \quad m(0)=1$
- which is obviously solved by
- $m(n)=7^{n}$.

Strassen Multiplication

- Remember that the size of the matrix was $2^{n} \times 2^{n}$.
- Thus, if $M(n)$ is the number of multiplications for an $n \times n$ matrix with power of 2 rows, then

$$
\text { - } M(n)=m\left(\log _{2}(n)\right)=7^{\log _{2}(n)}
$$

- Since
$\log _{2}\left(7^{\log _{2}(n)}\right)=\log _{2}(n) \log _{2}(7)=\log _{2}(7) \log _{2}(n)=\log _{2}\left(n^{\log _{2}(7)}\right)$
$\cdot M(n)=n^{\log _{2}(7)} \approx n^{2.80735}$

Strassen Multiplication

- The algorithm can be extended for matrices that
- have number of rows = number of columns not a power of 2
- are not square

