
Skip Lists
Thomas Schwarz, SJ

Linked Lists
• Standard data structure for storing key-value records

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.head
self.tail

class Node:
 def __init__(self, key, value, next_node):
 self.key = key
 self.value = value
 self.next_node = next_node

class List:
 def __init__(self):
 self.head = None
 self.tail = None

Linked List
• Tail inserts:

• Insert after the tail:

• If there is no tail:

• List is empty, so
create a new node
and set head and
tail to it

• Otherwise:

• Create a new node
and change the
link in the tail

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.head
self.tail

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.key
self.value
self.next_node

self.head
self.tail

self.key
self.value
self.next_node

Linked List
def insert(self, key, value):
 new_node = Node(key, value, None)
 if self.tail:
 self.tail.next_node = new_node
 self.tail = new_node
 else:
 self.head = new_node
 self.tail = new_node

Linked List
• Update by Value

• Run through the list:

• Set current pointer to head

• Check value

• Follow current pointer

def update_by_value(self, old_value, new_value):
 current = self.head
 while(current):
 if current.value == old_value:
 current.value = new_value
 return
 current = current.next_node

Linked List
• Update based on key

def update(self, key, new_value):
 current = self.head
 while(current):
 if current.key == key:
 current.value = new_value
 return
 current = current.next_node

Ordered Linked List
• Ordered Linked List:

• Insert in order:

• First find insertion point: the node before

• This means looking at the next node

• Three cases:

• Insert before head (and update head)

• Insert after tail (and update tail)

• Insert in the middle

Ordered Linked List
def insert(self, key, value):
 new_node = Node(key, value, None)
 if not self.head:
 self.head = new_node
 self.tail = new_node
 elif self.head.key > key:
 new_node.next_node = self.head
 self.head = new_node
 else:
 current = self.head
 while current.next_node and current.next_node.key < key:
 current = current.next_node
 new_node.next_node = current.next_node
 current.next_node = new_node
 if not new_node.next_node:
 self.tail = new_node

Ordered Linked List
• Start with a normal ordered linked list

• Nodes consist of key plus pointer to data plus link to
next node

Start

Ordered Linked List
• How do we find a record with a given key c?

• Use the pointer to the list in order to find the first node

• Compare the key of the node with c

• If they are equal, you found the record

• If they are not equal, continue until you find the record

• If you get to the null pointer at the very end or if you
find a node with key > c then the record is not there

Ordered Linked Lists
• How do you insert a record?

• Create a new node with a key c
Key: c

Pointer to record:

Pointer to next Node:

Ordered Linked Lists
• How do you insert a record?

• Pretend that you look for the record

• Find the node before and after Key: c

Pointer to record:

Pointer to next Node:

Key: b

Pointer to record:

Pointer to next Node:

Key: d

Pointer to record:

Pointer to next Node:

Record for key
b

Record for key
d

Ordered Linked Lists
• How do you insert a record?

• Now set two pointers to connect the previous to the new
and the new node to the following node.

Key: b

Pointer to record:

Pointer to next Node:

Key: d

Pointer to record:

Pointer to next Node:

Record for key
b

Record for key
d

Key: c

Pointer to record:

Pointer to next Node:

Record for key
c

Ordered Linked Lists
• How do you delete a record?

• Find previous and subsequent node
Key: b

Pointer to record:

Pointer to next Node:

Key: d

Pointer to record:

Pointer to next Node:

Record for key
b

Record for key
d

Key: c

Pointer to record:

Pointer to next Node:

Record for key
c

Ordered Linked Lists
• How do you delete a record?

• Change one pointer

Key: b

Pointer to record:

Pointer to next Node:

Key: d

Pointer to record:

Pointer to next Node:

Record for key
b

Record for key
d

Key: c

Pointer to record:

Pointer to next Node:

Record for key
c

Ordered Linked Lists
• Analysis

• Assume ordered list has n elements

• Insert: Needs to insert after visiting on average n/2
elements, afterwards constant reconstruction work

• Deletes: Needs to delete node after visiting on average
n/2 nodes

• Reads / Updates: Needs to find node after visiting on
average n/2 nodes

How to implement an
Ordered Linked List

• Remarks for Python and Java programmers

• Python and Java do not have explicit pointers

• But an object is given by its address

• Objects persists in memory until nobody has a
reference (i.e. a pointer) to them

How to implement an
Ordered Linked List

• What do we need for a node:

• A place for the key

• A pointer to the record

• A pointer to the next node

How to implement an
Ordered Linked List

class Node:
 def __init__(self, key = None, nextN = None, data = None):
 self.key = key
 self.next = nextN
 self.data = data

 def __str__(self):
 return "Node: key={}, data={}, next={}".format(self.key,
self.data, self.next)

How to implement an
Ordered Linked List

• An ordered linked list is given by a node with sentinel
value minus infinity

• To find in an OLL:

• Follow the next pointer until you hit a node with the key
that you are looking for

• Then follow the data link

How to implement an
Ordered Linked List

• Implementing look-up

• Question: Why do I know that at the end of the while
loop, currentNode.key >= key?

def find(self, key):
 currentNode = self.head
 while currentNode and currentNode.key < key:
 currentNode = currentNode.next
 if currentNode and currentNode.key == key:
 return currentNode.key, currentNode.data
 else:
 return None

How to implement an
Ordered Linked List

• Implementing insert

• Why do I know that current after the while loop is the
node just to the left of the insertion point?

def insert(self, key, data):
 current = self.head
 while current.next and key > current.next.key:
 current = current.next
 if current.next and current.next.key == key:
 print('key error: insertion failed, {}'.format(key))
 return
 newNode = Node(key, current.next, data)
 current.next = newNode
 return

How to implement an
Ordered Linked List

• Loop Invariant:

• key > current.next.key

• Only violated when I jump out of the while loop

• Therefore

• current.key < key < current.next.key if current.next
exists

• current.key < key otherwise

How to implement an
Ordered Linked List

• Implementing delete

def delete(self, key):
 current = self.head
 while current.next and key > current.next.key:
 current = current.next
 if key != current.next.key:
 return
 else:
 current.next = current.next.next

Skip Lists
Thomas Schwarz, SJ

Skip List
Motivation

• Can you guess what this list is?

San Francisco
22nd Street
Bayshore
South San Francisco
San Bruno
Millbrae
Burlingame
San Mateo
Hayward Park
Hillsdale
Belmont
San Carlos
Redwood City
Menlo Park
Palo Alto
California Ave.
San Antonio
Mountain View
Sunnyvale
Lawrence
Santa Clara
College Park
San José
Tamien
Capitol
Blossom Hill
Morgan Hill
San Martin
Gilroy

Skip List
Motivation

• Caltrain stations from San
Francisco South

• Underlined stations are for the
"Baby Bullet"

• You can take time of your trip
if you use the baby bullet, and
then switch to a local

• That is how skip lists improve
on linked lists.

San Francisco
22nd Street
Bayshore
South San Francisco
San Bruno
Millbrae
Burlingame
San Mateo
Hayward Park
Hillsdale
Belmont
San Carlos
Redwood City
Menlo Park
Palo Alto
California Ave.
San Antonio
Mountain View
Sunnyvale
Lawrence
Santa Clara
College Park
San José
Tamien
Capitol
Blossom Hill
Morgan Hill
San Martin
Gilroy

Ordered Linked Lists with a
Baby Bullet

• One simple way to speed up look-up in linked lists is to
have shortcuts between nodes.

• An ordinary ordered linked list

• The same ordered linked lists with short-cuts

3 10 12 24 25 37 41 42 43 46 50 52 53 54 60 62

3 10 12 24 25 37 41 42 43 46 50 52 53 54 60 62

Ordered Linked Lists with a
Baby Bullet

• To find a record with key c or an insertion point for the
record with key c:

• Use the baby-bullet links until the node pointed to has
a key value larger than c or does not exist

• Then switch to the normal links

Ordered Linked Lists with a
Baby Bullet

• How to maintain the Baby Bullet stations

• Strategy 1:

• Whenever the distance between two baby bullet
stations is too large, we introduce a new baby bullet
station in the middle

• Strategy 2:

• Whenever we insert a record, the corresponding
node becomes a baby bullet train station with a
given probability

Ordered Linked Lists with a
Baby Bullet

• Analysis

• Assume n nodes per list, m nodes that are baby bullet
nodes

• Average distance between two baby bullet nodes is

• On average, will need baby bullet stations and
then normal stations to find a record /

insertion point.

n/m

m/2
(n/m)/2 =

n
2m

Ordered Linked Lists with a
Baby Bullet

• Minimize with respect to for

constant :

• For :

f(m, n) =
m
2

+
n

2m
m

n

n = 10000

200 400 600 800 1000

200

400

600

800

Ordered Linked Lists with a
Baby Bullet

• Calculate the derivative and set it equal to zero

• is zero if

•

• This suggests that our two strategies will not work well for
growing lists

• One possibility: Make a new node a baby bullet train
station with a probability that slowly sinks in dependence
on the number of elements inserted

δf(m, n)
δm

=
1
2

−
n

2m2

m = ± n

Puig's Skip List
• Skip List: Create more and more nodes at a higher level

• For searches, inserts, deletes use the highest level,
then if you overshoot, go down one level

Puig's Skip List
• Example:

• Searching for 52

• start out at three level 2

• move to 43 level 2

• move to 50 level 2

• overshoot: move to 50 level 1

• overshoot: move to 50 level 0

• move to 52

Puig's Skip List
• Creating a skip list

• Start out with a start node with one level

• With a sentinel value of - infinity

• Nodes have

• key (assumed to be an integer)

• pointer to next on the same level

• pointer to down node (or nil if we are at level 0)

• pointer to record if we are at level 0

Puig's Skip List
• Construction

• Beginning node has to have the maximum level of any
other nodes

• Could have a last node with key infinity to finish or
could have pointers having a null value

Puig's Skip List
• Searching for a record with key c

• Start in the highest level start node; set it to currentNode

• Guaranteed to have level equal to the highest level node in the list

• Follow the forward pointer

• If forward pointer points to a key with key larger than c or the
forward pointer is null:

• Follow the downward pointer: currentNode = currentNode.down

• If downward pointer is zero, then the record with key c does not
exist

• Otherwise:

• Follow the forward pointer: currentNode = currentNode.next

Puig's Skip List
• Example: Looking for node 23

• Start out in the highest level start node

• Get the key of the next node at this level

• curpoint.next.key is 12

Puig's Skip List
• Since 12 < 23, follow the next pointer

Puig's Skip List
• The key in the next node is 25, which is larger than 23

• Go down

Puig's Skip List
• The key in the next node at this level is 24, which is larger

than 23

• Go down one more to level 1

Puig's Skip List
• The key in the next node is 13, so we follow the next link

• The current node now has key 13 and is at level 1

• Since the key in the next node is 19, which is < 23 we
follow the next link

Puig's Skip List
• Current node has key 19 and next node has key 24

• Therefore, we follow the downward pointer

Puig's Skip List
• Current node has level 0, next node has key 21

• Set current node to the next node

Puig's Skip List
• Current node has key 21 and next node has key 23

• Go to it

Puig's Skip List
• Current node has the key we are looking for

• Follow the record link to retrieve the record

Puig's Skip List
• To insert a node:

• Do a search, but remember each last level node

• Example: Inserting 22

Puig's Skip List
• Node insertion:

• Determine the level probabilistically

• Use base probability p

• With probability : Node goes up one level

• With probability : Node goes up two levels

• With probability : Node goes up three levels

• etc.

p

p2

p3

Puig's Skip List
• Node Insertion:

• In practice: determine a maximum level maxLevel

import random

def level(maxLevel, p):
 level = 0
 while (level < maxLevel):
 if random.random() > p: #stop with probability 1-p
 return level
 level += 1
 return level

Puig's Skip List
• At each level of the node, splice the node into the existing

levels

• Assume we have a level 4 new node

• Need to set four next pointers in the new nodes

• Switch the predecessor pointers to the new nodes

Puig's Skip List
• Final result:

Puig's Skip List
• Deletion:

• Works similar to ordered linked lists

Puig's Skip List
• Analysis

• To show: Searches (inserts, and deletes) in time
 for a list of elements

• Can show: Probability that a search exceeds time
 vanishes fast

Θ(log n) n

C log(n)

Puig's Skip List
• The expected number of nodes in each level is

• for level 0

• for level 1

• for level 2

• etc.

np0 = n

np1 = pn

np2 = p2n

Puig's Skip List
• Define to be the level (in dependence on) where there are

nodes.

• Recall that is larger than one

• From what we just have seen:

•

• which implies

• or

L(n) n
1
p

1
p

npL(n) =
1
p

n =
1
p

L(n)+1
L(n) = log1

p
(n) − 1

Puig's Skip List
• Analysis:

• Trick: go backward from node

• Although all nodes and levels are known, we act as if
we discover them while backtracking the search path

• Let be the costs of going up levels in an infinite
list

• When we go towards the beginning, we either can
move up (with probability) or move right (with
probability)

c(k) k

p
1 − p

Puig's Skip List

This means (by subtracting on both sides

or .

This implies .

c(k) = p(1+cost move up) + (1 − p)(1+cost move left)

= p(1 + c(k − 1)) + (1 − p)(1 + c(k))

= p + (1 − p) + pc(k − 1) + (1 − p)c(k)

= 1 + p ⋅ c(k − 1) + (1 − p) ⋅ c(k)

(1 − p) ⋅ c(k)

p ⋅ c(k) = 1 + p ⋅ c(k − 1)

c(k) =
1
p

+ c(k − 1)

c(k) =
k
p

Puig's Skip List
• Since we are in an infinite list, we cannot just set .

• Let's set .

• At that level, there are nodes and leftward moves

• At level , we expect one node

• At level , we have on average nodes

• etc.

• In total, there are nodes at and above

k = ∞

k = L(n)

1/p 1/p

L(n) + 1

L(n) + 2 p

∞

∑
l=1

pl−1 =
1

1 − p
L(n)

Puig's Skip List
• Therefore:

• moves to get to level

• Afterwards, on average moves to the top of the

initial node

• For a total of

L(n)/p L(n)
1

1 − p

L(n)
p

+
1

1 − p
=

log1
p

n

p
+ +

1
1 − p

= Θ(log(n))

Puig's Skip List
• Practical considerations:

• If we have an idea about the maximum length of a
list, use a maximum level of

• We do not need to keep nodes at different levels
separate:

• Just have nodes with pointers at different
levels

N
L(N) = log1

p
(N)

L(N)

