
Backtracking 2:
Backtracking can also be used to solve many mathematical puzzles such as Cryptogram and
Sudoku. There is a variant of Sudoku, that has not yet found a published solution using
backtracking in the net. This means that you do not need to worry about classmates gaining
an unfair advantages by downloading and adapting someone else's solution.

A Number Block puzzle consists of a rectangular grid of cells. It is divided into blocks each
containing up to five cells. Each cell contains a digit from 1 to n, with n being the number of
cells in the block. So, a single cell block contains only a cell with 1, a two-cell block contains
one cell with 1 and one with 2, and so on. The same digit is not allowed to appear in a
neighboring cell, not even diagonally.

Use the recursive backtracking scheme from the previous assignment to solve the number
block puzzle given below:

Here, i have numbered each cell with row and column coordinates. I invite you to try the
number puzzle yourself. This will convince you that there is only one valid solution.

Hint: Create a list of lists to form a two-dimensional matrix, initialized with zeroes. Add the
numbers in the current cell, i.e. matrix[0][0] = 4. Then create a list of sets of 2-tuples to
define the blocks. You need to implement:

valid_so_far, which checks that (a) no two non-zero integers are next to each other,
even diagonally (b) each area contains only numbers larger than 0 once and not larger than
the number of cells in the area.

done, which checks that there are no zero cells left

find_empty, which returns the coordinates of the first cell that still contains a zero.
print_it, which prints out the matrix.

For your convenience, here is the encoding of the original board (called matrix):

di = 6

0,0 1,0 2,0

0,1 2,1 3,1

3,0 4,0 5,0

0,2

1,1

1,2

1,3

2,2

4

4,1

4,2

5,1

5,2

5,3

4,4 5,4

3,2

2,3 3,3 4,3

3,4

5

0,3

0,4

0,5

1,4 2,4

1,5 2,5 3,5 4,5 5,5

4

2 3

5

1

dj = 6
configuration = [{(0,0), (1,0), (0,1), (2,0)},
 {(2,1), (3,1), (3,0), (4,0), (5,0)},
 {(0,2), (1,1), (1,2), (1,3), (2,2)},
 {(4,1), (4,2)},
 {(5,1), (5,2), (5,3), (4,4), (5,4)},
 {(3,2), (2,3), (3,3), (4,3), (3,4)},
 {(0,3), (0,4), (0,5), (1,4), (2,4)},
 {(1,5), (2,5), (3,5), (4,5), (5,5)}
]

matrix = [[0 for j in range(dj)] for i in range(di)]
matrix[0][0]=4
matrix[4][0]=5
matrix[2][2]=4
matrix[3][3]=2
matrix[4][3]=3
matrix[4][4]=5
matrix[2][5]=1

