P and NP Complexity Classes

Algorithms
Motivation

• Design of an algorithm is an important task of a Computer Scientist
 • Need to show that an algorithm is correct
 • Need to show how an algorithm behaves
 • Need to know whether an efficient algorithm can exist
Motivation

• Complexity Theory
 • Presents classes of algorithms and suspects differences between them
 • Needed to formulate modern cryptography
Class P

• Most algorithms considered in class are polynomial time bound

\[\exists k \in \mathbb{N} \quad \text{runtime}(n) \in O(n^k) \]

• In reality, algorithms with runtimes in \(\Omega(n^k), \ k > 2 \) are useless in many circumstances

• Class P: set of problems for which there exists a polynomially bound
Class NP

• Algorithms in P can be “efficiently” calculated
• Sometimes, problems are hard to solve but easy to verify
• Example: Finding a path of length n in a graph
• NP: Class of problems for which a solution can be solved in polynomial time
• Alternative Formulation: Can be solved by a non-deterministic algorithm that is polynomially bound
 • The algorithm “guesses” a solution and then verifies it
A Conjecture and a Theorem

• Conjecture: \(\mathbb{P} \neq \mathbb{NP} \)

• Theorem: There exists problems \(p \in \mathbb{NP} \) such that
 \[p \in \mathbb{P} \implies \mathbb{P} = \mathbb{NP} \]

• These problems are called \textbf{NP-complete}

• The existence of NP-complete problems is evidence that the conjecture might be true
A Conjecture and a Theorem

- There are very similar problems that are in different classes
- Graphs
 - Eulerian tour: A cycle that visits every edge at least once (though it usually visits vertices several times):
 - Hamiltonian cycle: A simple cycle that visits every vertex exactly once (but usually does not visit every edge)
A Conjecture and a Theorem

• There are very similar problems that are in different classes

 • Graphs:

 \(P \)

 • Shortest Path between two vertices

 \(NPC \)

 • Existence of a path of certain length
A Conjecture and a Theorem

- There are very similar problems that are in different classes

- Satisfiability

- Given a boolean formula in conjunctive normal form, find a variable assignment that makes the formula true.

\[(\neg a \lor b)(a \lor \neg b \lor c)(a \lor c)(\neg a \lor b \lor \neg c) \]

\[a = 1, \ b = 1, \ c = 1 \]
A Conjecture and a Theorem

• There are very similar problems that are in different classes

 • Satisfiability

 • Many problems can be formulated in terms of satisfiability
Human-Computer Authentication

• Click in the triangle defined by the secret icons
Human-Computer Authentication

- Safety question
 - How many interactions do need to be observed in order to find the secret?
 - One problem: people usually click on the center of the triangle
 - Greater problem: Evaluation can be formulated as a satisfiability problem
 - Good (non-P) algorithms exists to solve them usually fast
 - Can be shown that few interactions need to be observed in order to deduce the secret
A Conjecture and a Theorem

- There are very similar problems that are in different classes
 - Satisfiability
 - **P** 2-CNF Satisfiability
 - Decide satisfiability if the or-clauses can have one or two variables
 - 3-CNF Satisfiability
 - Decide satisfiability if the or-clause can have three (or less) variables
 - **NPC**
Existence vs. Solution

- Decision problem: Answer is yes or no
- Optimization problem: Find a feasible solution

- Can change optimization problems into decision problem
 - Example: Finding longest path in a graph
 - Decision Problem: is there a path of length \(l \)
 - Solve the decision problem repeatedly in order to find the maximum length of a path
 - Once found the maximum length, remove edges one by one to see whether the maximum length has changed
 - So, solving the decision problem allows you to find a solution
Encodings

• We look at the run-time in dependence on the size of the problem
• But the size of the problem can change if we use a different encoding
• Example: Knapsack
 • Rectangle is of size \(n \times m \)
 • Can encode numbers in unary
 • Then dynamic programming is in P
 • Can encode numbers in binary
 • Then dynamic programming is not in P
 • If \(l \) is the number of digits, then rectangle is of size \(2^l \times 2^l \)
A first problem in NPC

- A boolean circuit consists of the normal gates and has no cycles (input feeding back)
- Decision problem: Is a circuit satisfiable, i.e., is there a selection of inputs such that the circuit output is 1
A first problem in NPC

• Given a description of the circuit, we can check in polynomial time whether a given assignment satisfies the circuit
A first problem in NPC

- Assume a decision problem in NP.
- Thus, there exists an algorithm A that verifies a solution y for problem x in polynomial time.
- The idea is to translate this into a circuit.
A first problem in NPC

• The algorithm is executed on a computer with program counter PC, machine state, and working storage

• The computer has as input the algorithm (program), the problem x and the solution

| Algorithm as a program | PC | machine state | input x | solution y | working storage |
A first problem in NPC

- The computer then executes a first step. This is emulated by a Boolean circuit.

- The circuit M is independent of the instruction executed and the input.
A first problem in NPC

- We repeat this over and over
A first problem in NPC

- Eventually, the first bit in working storage will contain the answer, 0 for failure and 1 for solution worked.
A first problem in NPC

• What is the size of the circuit?
• Since the algorithm runs in worst case time
 \[f(n) \in \mathbb{R}[n] \]
• The working storage is smaller than \(f(n) \)
• The aux. machine state is smaller than \(f(n) \)
• Program, PC, x, y are smaller than \(f(n) \)
• First row is smaller than \(f(n)^6 \)
A first problem in NPC

- The number of rows is smaller than $f(n)$
- Total size of the circuit is smaller than $f(n)^7$
 - which is still a polynomial
A first problem in NPC

- Given a problem in NP
 - Can construct the circuit in polynomial time
 - Details are skipped over
- Circuit has input y (the guessed solution)
- And outputs whether for a given x the solution y is indeed a solution
- If circuit-satisfiability is in P:
 - Can decide whether a given x has a solution in polynomial time
- Therefore, the original problem would be in P