
Linear Hashing

Linear Hashing
• Central idea of hashing:

• Calculate the location of the record from the key

• Hash functions:

• Can be made indistinguishable from random function

• SH3, MD5, …

• Often simpler

• ID modulo slots

Linear Hashing
• Can lead to collisions:

• Two different keys map into the same address

• Two ways to resolve:

• Open Addressing

• Have a rule for a secondary address, etc.

• Chaining

• Can store more than one datum at an address

Linear Hashing
• Open addressing example:

• Linear probing: Try the next slot

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8

“fly”, 2

0

1
2

3

4
5

6

7
Insert “fly”

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“fly”, 2

0

1
2

3

4
5

6

7

Insert “gnu”
hash(“gnu”) —> 2

Since spot 2 is taken, move to the next spot

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“fly”, 2

0

1

2

3

4

5

6

7

Insert “hog”
hash(“hog”) —> 3

Since spot is taken, move to the next

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“pig”, 7

“fly”, 2

0

1

2

3

4

5

6

7

Looking for “gnu”
hash(“gnu”) —> 2

Try out location 2. Occupied, but not by “gnu”

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“pig”, 7

“fly”, 2

0

1

2

3

4

5

6

7

Looking for “gnu”
hash(“gnu”) —> 2

Try out location 3. Find “gnu”

Hashing Example
def hash(a_string):
 accu = 0
 i = 1
 for letter in a_string:
 accu += ord(letter)*i
 i+=1
 return accu % 8 “gnu”, 2

“hog”, 3

“pig”, 7

“fly”, 2

0

1

2

3

4

5

6

7

Looking for “ram”
hash(“ram”) —> 3

Look at location 3: someone else is there
Look at location 4: someone else is there
Look at location 5: nobody is there, so if it were in the
 dictionary, it would be there

Hashing
• Linear probing leads to convoys:

• Occupied cells tend to coalesce

• Quadratic probing is better, but might perform worse with
long cache lines

• Large number of better versions are used:

• Passbits

• Cuckoo hashing

• Uses two hash functions

• Robin Hood hashing …

Hashing
• Chaining

• Keep data mapped to a location in a “bucket”

• Can implement the bucket in several ways

• Linked List

Hashing
0:

1:

2:

3:

4:

5:

6:

7:

ape ewe sow tit

Chaining Example with linked lists

Hashing Example
ape ewe sow tit0:

1:

2:

3:

4:

5:

6:

7:

Chaining Example with an array of pointers
(with overflow pointer if necessary)

Hashing Example

7:

6:

5:

7: null null null

6: sow null null

5: null null null

4: null null null

3: null null null

2: ewe tit null

1: null null null

0: ape null null

Chaining with fixed buckets
Each bucket has two slots and a pointer
to an overflow bucket

Hashing
• Extensible Hashing:

• Load factor α = Space Used / Space Provided

• Load factor determines performance

• Idea of extensible hashing:

• Gracefully add more capacity to a growing hash
table

Linear Hashing
• Assume a hash function that creates a large string of bits

• We start using these bits as we extend the address
space

• Start out with a single bucket, Bucket 0

• All items are located in Bucket 0

Items with keys 19, 28, 33

Bucket 0:

19, 28, 33

Linear Hashing
• Eventually, this bucket will overflow

• E.g. if the load factor is more than 2

• Bucket 0 splits

• All items in Bucket 0 are rehashed:

• Use the last bit in order to determine whether the
item goes into Bucket 0 or Bucket 1

• Address is h1(c) = c (mod 2)

Linear Hashing
• After the split, the hash table has two buckets:

• After more insertions, the load factor again exceeds 2

Bucket 0:

28

Bucket1:

19, 33

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Linear Hashing
• Again, the bucket splits.

• But it has to be Bucket 0

• For the rehashing, we now use two bits, i.e.

• But only for those items in Bucket 0

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2:

h2(c) = c (mod 4)

Linear Hashing
• After some more insertions, Bucket 1 will split

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Linear Hashing
• The state of a linear hash table is described by the

number of buckets

• The level is the number of bits that are being used to
calculate the hash

• The split pointer points to the next bucket to be split

• The relationship is

• This is unique, since always

N
l

s

N = 2l + s
s < 2l

Linear Hashing
• Addressing function

• The address of an item with key is calculated by

• This reflects the fact that we use more bits for buckets
that are already split

c
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 1 = 20 + 0

Number of buckets: 1
Split pointer: 0
Level: 0

Bucket 0:

19, 28, 33

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 2 = 21 + 0

Number of buckets: 2
Split pointer: 0
Level: 1

Bucket 0:

28

Bucket1:

19, 33

Add items with hashes 40 and 11
This gives an overflow and we split Bucket 0

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 3 = 21 + 1

Number of buckets: 3
Split pointer: 1
Level: 1

Bucket 0:

28, 40

Bucket1:

11, 19, 33 split Bucket 0
Create Bucket 2
Use new hash function on items in Bucket 0

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2: No items were moved

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 3 = 21 + 1

Number of buckets: 3
Split pointer: 1
Level: 1

Bucket 0:

28, 40

Bucket1:

11, 19, 33

Bucket 2: Add items 6, 35

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6
Because of overflow, we split
Bucket 1

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 4 = 22 + 0

Number of buckets: 4
Split pointer: 0
Level: 2

Bucket 0:

28, 40

Bucket1:

11, 19, 33, 35

Bucket 2:

6

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 4 = 22 + 0

Number of buckets: 4
Split pointer: 0
Level: 2

Bucket 0:

28, 40

Bucket1:

 33

Bucket 2:

6

Bucket 3:

11, 19, 35

Now add keys 8, 49

Bucket 0:

28, 40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35
Creates an overflow!
Need to split!

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 5 = 22 + 1

Number of buckets: 1
Split pointer: 1
Level: 2

Bucket 0:

28, 40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 0:

40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 4:

28
Create Bucket 4.
Rehash Bucket 0.

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 5 = 22 + 1

Number of buckets: 5
Split pointer: 1
Level: 2

Bucket 0:

40, 8

Bucket1:

 33, 49

Bucket 2:

6

Bucket 3:

11, 19, 35

Bucket 4:

28
Add keys 9, 42

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Creates an overflow!
Need to split!

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 6 = 22 + 2

Number of buckets: 1
Split pointer: 2
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

No item actually moved, but average load factor is now
again under 2.

Split

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 6 = 22 + 2

Number of buckets: 6
Split pointer: 2
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:
add 5,10

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 7 = 22 + 3

Number of buckets: 7
Split pointer: 3
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

6, 10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 6:

6

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 7 = 22 + 3

Number of buckets: 7
Split pointer: 3
Level: 2

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42

Bucket 3:

11, 19, 35

Bucket 4:

28

Bucket 5:

5

Bucket 6:

6

add 92, 74

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 8 = 23 + 0

Number of buckets: 8
Split pointer: 0
Level: 3

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 8 = 23 + 0

Number of buckets: 8
Split pointer: 0
Level: 3

Bucket 0:

40, 8

Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5

Bucket 6:

6

Bucket 7:
add 13, 54

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 9 = 23 + 1

Number of buckets: 9
Split pointer: 1
Level: 3

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 9 = 23 + 1

Number of buckets: 9
Split pointer: 1
Level: 3

Bucket 0: Bucket1:

 9, 33, 49

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

add 1, 81

Bucket 0: Bucket1:

 1, 9, 33, 49,
81

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7: Bucket 8:

40, 8

Linear Hashtable Evolution
def address(c):

a = hash(c) % 2**l
if a < s:

a = hash(c) % 2**(l+1)
return a

N = 10 = 23 + 2

Number of buckets: 10
Split pointer: 2
Level: 3

Bucket 0: Bucket1:

 1, 33, 49, 81

Bucket 2:

10, 42, 74

Bucket 3:

11, 19, 35, 67,
99

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

 39

Bucket 8:

40, 8

Bucket 9:

 9

Bucket 0: Bucket1:

 1, 33, 49, 81

Bucket 2: Bucket 3:

11, 19, 35, 67,
99

Bucket 4:

28, 92

Bucket 5:

5, 13

Bucket 6:

6, 54

Bucket 7:

39

Bucket 8:

40, 8

Bucket 9:

 9

Bucket 10:

 10, 42, 74

Linear Hashing
• Observations:

• Buckets split in fixed order

• 0, 0,1, 0, 1, 2, 3, 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, 2, …, 15,
0, …

• Address calculation is modulo , i.e. the l least
significant bits

• Buckets 0, 1, …, s-1 and 2**l, 2**l+1, … N-1 are
already split, they have on average half the size of
the buckets s, s+1, …, 2**l.

2l

Linear Hashing
• Observations:

• An overflowing bucket is not necessarily split
immediately

• Sometimes, a split leaves all keys in the splitting bucket
or moves them all to the new bucket

• On average, a bucket will have α items in them

