
Dunder Methods
Thomas Schwarz, SJ

Dunder Methods
• Python reserves special names for functions that allows

the programmer to emulate the behavior of built-in types

• For example, we can create number like objects that
allow for operations such as addition and multiplication

• These methods have special names that start out with
two underscores and end with two underscores

• Aside: If you preface a variable / function / class with a
single underscore, you indicate that it should be treated
as reserved and not used outside of the module / class

Dunder Method
• A class for playing cards:

• A card has a suit and a rank

• We define this in the constructor __init__

class Card:
 def __init__(self, suit, rank):
 self.suit = suit
 self.rank = rank

Dunder Method
• We want to print it

• Python likes to have two methods:

• __repr__ for more information, e.g. errors

• __str__ for the print-function

• Both return a string

class Card:

 def __str__(self):
 return self.suit[0:2]+self.rank[0:2]
 def __repr__(self):
 return "{}-{}".format(self.suit, self.rank)

Dunder Method
• __repr__ is used when we create an object in the terminal

• __str__ is used within print or when we say str(card)

Dunder Method
• We now create a carddeck class

• Consists of a set of cards

• Constructor uses a list of ranks and a list of suits

class Deck:
 def __init__(self, los, lov):
 self.cards = [Card(suit, rank) for suit in los
 for rank in lov]

Dunder Method
• We create the string method. Remember that it needs to

return a string.

class Deck:
 def __init__(self, los, lov):
 self.cards = [Card(suit, rank) for suit in los
 for rank in lov]
 def __str__(self):
 result = []
 for card in self.cards:
 result.append(str(card))
 return " ".join(result)

Dunder Method
• In order to allow python to check whether a deck exists,

we want to have a length class. Besides, it is useful in
itself.

• if deck: works by checking len(deck)

class Deck:

 def __len__(self):
 return len(self.cards)

Dunder Method
• Given a deck, we want to be able to access the i-th

element.

• We do so by defining __getitem__

class Deck:

 def __getitem__(self, position):
 return self.cards[position]

Dunder Method
• This turns out to be very powerful:

• We can print out the i-th element of the deck

• But we can also slice the deck

french_deck = Deck(['Spade', 'Diamonds', 'Hearts', 'Clubs'],
 ['Ace', 'King', 'Queen', 'Jack', '10', '9',
 '8', '7', '6', '5', '4', '3', '2'])

Dunder Method
• We can use random.choice() to select a card

• Only for random.sample do we need to go to the
underlying instance field

• But this is ugly and we better write a class method for
it.

