
Dictionary
Manipulations

Thomas Schwarz

Dictionary Creation
• Creating a dictionary using assignments

scrabble = {}
scrabble['a'] = 1
scrabble['b'] = 3
scrabble['c'] = 3
scrabble['d'] = 2
…

Dictionary Creation
• Creating a dictionary with pre-inserted values

scrabble = {'a':1, 'b'=3, 'c'=3, 'd'=2}

Dictionary Creation
• Creating a dictionary with dict and key-value pairs

scrabble = dict(a=1, b=3, c=3, d=2, e=1)

Dictionary Creation
• Creating a dictionary with dict and a list of key-value pairs

scrabble = dict([('a',1), ('b',3), ('c',3), ('d',2), ('e',1)])

Dictionary
• Checking for existence

• Use the “in” keyword

Dictionaries
• A simple program that “learns” Spanish words

def test():
 dicc = {}
 while True:
 astr = input("Enter an English word: ")
 if astr == "Stop it":
 return
 elif astr in dicc:
 print(dicc[astr])
 else:
 print("I have not yet learned this word")
 val = input("Please enter the Spanish word: ")
 dicc[astr] = val

Dictionaries
• Dictionaries have an internal structure

• You will learn in Data Structures how to build
dictionaries yourselves

• For the moment, enjoy their power

• You can print dictionaries

• You will notice that they change structure after inserts
and not reflect the order in which you inserted elements

• This is because they optimize access

Dictionaries
• Dictionaries have an internal structure

• It uses hashing in order to assign locations internally

• A hash is a long unsigned integer

Dictionaries
• Deleting all entries in a dictionary

• use the clear() method

• Deleting an entry without fear of creating a key error

• Use an if statement

• Use pop with a second argument None

• dicc.pop(1, None)

Dictionaries
• Looping over keys

• Simplest:

• for number in dicc:

• iterkeys() or iter works the same way

• for number in dicc.iterkeys():

• for number in iter(dicc):

Multi-Dictionaries
• Problem:

• Instead of associating one value with a key, we want to
associate several values:

• a “multi-dictionary”

• Solution:

• The values of the dictionaries should be lists (or sets —
coming week)

Multi-Dictionaries
• Example:

• We want to pass through a file and create an index of
important words with their occurrences

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 word_number = 0
 for line in infile:
 for word in line.split():
 word = word.strip(":,.?![]'")
 word = word.lower()

 word_number +=1
 if len(word)>8:
 if word in dicc:
 dicc[word].append(word_number)
 else:
 dicc[word]=[word_number]

Calculating on Values
• Assume you have a dictionary with numerical values

• For example: a dictionary with the prices of stocks on
September 15, 2018

• You want the average, the maximum, the minimum …
price

dstocks = {“tata”: 2063.30,
 “hdfc”: 2029.20,
 “hiul”: 1630.15,
 …

}

Solution
• You can access the values of a dictionary through the

values method.

• values() returns an iterator of all the values in the
dictionary

Calculating with keys
• Problem:

• You want to calculate on the keys of a dictionary

• Solution:

• The keys() method returns an iterator of the keys of a
dictionary

Finding the most common
item in a list

• We use a dictionary as a counter.

• First way: We can do so by ourselves.

• Create a dictionary

• Pass through the list

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1

get specifies a
default value,

it is otherwise equivalent to
counter[x]

Finding the most common
item in a list

• If we do not want to use get, we can just check whether
the list-item is already in the dictionary

def most_frequent(lista):
 counter = {}
 for x in lista:
 if x in counter:
 counter[x]+=1
 else:
 counter[x]=1

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

highest_seen contains the
highest encountered value

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

highest_seen is adjusted
whenever we see a higher

value in the counter

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

but we also need to
remember the key,

which we record in best_key

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

because the key with the
highest counter value is the

result that we return

Finding the most common
item in a list

• But we can also use the work of others

• The Counter in the collections module

• You create a new object of type Counter

from collections import Counter

def most_frequent(lista):
 ctr = Counter()

Defines a new
object called ctr

ctr is an object of
type Counter

Finding the most common
item in a list

• Counters are (updated) like dictionaries

• But they have a default value of 0

from collections import Counter

def most_frequent(lista):
 ctr = Counter()
 for item in lista:
 ctr[item] += 1

Here we add 1 to
the value of
ctr[item]

No need to initialize!

Finding the most common
item in a list

• Counters have a method called most_common

• Argument is the number of most common items

• Returns a list of pairs

from collections import Counter

def most_frequent(lista):
 ctr = Counter()
 for item in lista:
 ctr[item] += 1
 return ctr.most_common(1)[0][0]

• Get a list of one
elements.

• Get the first (and
only) element of the
list

• Get the first
coordinate of that
element

