Python Thomas Schwarz, SJ

Why

- Universal, accessible language
 - Clear and simple syntax
 - Python philosophy: The frequent should be easy
 - Made for reading
 - Used for fast prototyping

- Excellent support community
 - Help for beginners and experts is easily available

Why

- Used in a variety of communities
 - Python allows easy development of modules
 - Numpy to allow scientific calculations
 - Keras for deep-learning
 - Turtle to teach children
 - Pyplot etc. for producing article-quality graphics
 - •
- Has become a "glue" language for AI and Data Science

Why

Fig 1: KDnuggets Analytics/Data Science 2019 Software Poll: top tools in 2019, and their share in the 2017, 2018 polls

• 5 out of 10 top skills listed in the KDnuggets poll are related to Python

What

- What are the goals of this class?
- What are we going to cover?

What

- Learn programming the *Python* way
 - Python is terse, clear, incorporates support for different programming styles
 - Imperative programming
 - Functional programming
 - Object Oriented programming
 - Event-driven programming: TkInter
 - Pythonesk: Doing things the Python way

How

- You learn programming by programming
 - Activity driven class
 - Collaboration is encouraged
 - Ideal environment:
 - Pairwise programming:
 - One student is the driver
 - Types the program
 - Other student is the navigator
 - Tells the driver what to do
 - And hopefully forces both to discuss and explain

How to get Python

- Python uses major and minor release numberings
- Current: Python 3.10
 - Python 2.7 is still being used, but its use is fading
 - MacOS comes with Python 2.7.18
- We will use Python 3.x

How to get Python

- Data Scientists like Anaconda
 - Comes with all usual data science modules preinstalled
- Standard Python
 - from python.org
 - Comes with pip, the Python packet installer
 - We use this one
 - Has an interface called IDLE

How to get Python

- Follow instruction at the website
- Download according to OS
- WinOS Important: When given the opportunity, add Python to Path
 - You can set the path yourself, but this makes some tasks easier

and integrate systems more effectively. <u>>>> Learn More</u>

U Get Started

Download

Docs

• Use the default location

- After installation:
 - Open a command prompt / shell / terminal and type in
 - python3 --version
 - WinOS: If this does not work, you might want to change the path to include the python directory
 - MacOS: python --version gives Python 2.7.18
 - python3, python3.10 ... allows you to access different python versions

- For this class, we will use the IDLE interface
 - IDLE is in the Python folder
 - You might want it in your taskbar
 - You can use IDLE as a desktop calculator

- Code is executed in the CPU
 - Instructions are in machine language
 - Depending on the architecture

- Code is executed in the CPU
 - Instructions are in machine language
 - Machine languages differ between architectures
 - Early programming done directly into machine language
 - Replaced by programming in Assembly
 - An assembly instruction is a more readable version of a machine language instruction
 - (In first approximation)
 - Some code is still written in assembly (e.g. malware, ...)

- Higher Level Languages HLL (e.g. Fortran, C, ...)
 - Instruction corresponds to several assembly language instruction
 - Program is somewhat independent of machine architecture
 - A program called compiler translates HLL code into assembly language code
 - Another program called assembler translates assembly into machine language
 - Result is "executable code"

- With better architectures
 - Can write executable code for (almost) all architectures
 - By programming a *virtual machine*
 - A virtual machine is a computer program that simulates a simple computer
 - This program takes a string of bytes as its input: the byte code
 - When running and executing a Python program:
 - Python translates the "source instructions" into Python byte code, which is then "executed" / interpreted by the virtual machine

- Disadvantage of interpreted languages:
 - Cannot make best use of the underlying architecture
- Advantages of interpreted languages:
 - For each platform, need to optimize only the virtual machine
 - Same code / script can run on any platform with a virtual machine

- Python virtual machines are usually written in C
 - Cython
- And sometimes in Java
 - Jython
- For optimized code:
 - Python can use modules developed in C / Java
 - Can be called from within Python

Use of Python

- Python has a simple, but powerful syntax
 - Good <u>first</u> programming language
- Python is ideal for *fast prototyping*
 - Developing Python code is faster than for other languages
 - If Python performance is not enough, can use the Python code as a blue print to develop in a highperformance language like C or C++

Use of Python

- "Glue" language for machine learning
 - Many machine learning algorithms use heavy duty numerical algorithms
 - But users are usually not programmers with years of experience
 - Use a python interface
 - Modules are implemented in C
 - This is a common phenomenon

Use of Python

- Numerical algorithms : numpy and scipy
- Statistics
- Web frameworks: django, flask, ...
- Web scraping
- Neural Networking Pytorch, Keras
- Data Science : data cleaning, statistics, ML
- Visualization : pyplot
- •