
Laboratory 1 
Problem 1:  
The solutions of a quadratic equation  are given by 


,


so the solution can be a complex number is the number under the square root (known as the 
discriminant) is negative. 


Write a program that asks the user to enter the values for a, for b, and then for c.  The program 
then prints the two solutions.  Use exponentiation by 0.5 to calculate the square root.  If the 
“discriminant”  is negative, Python will happily calculate and return complex 
solutions.   


Problem 2: 
Write a program that takes a ship's speed in nautical miles per day and converts it into miles 
per hour.


Problem 3: 
The Babylonian method to calculate a square root has become known as Heron's method 
named after a Greek mathematician from Alexandria in the Nile delta. If  is the number for 
which we want to calculate , we proceed with an initial guess . We then improve the guess 
iteratively by updating the guess by the mean of  and , i.e. by setting


.


Write a program that asks the user to enter . Then starting with guess , apply the 
update five times. Then print out the result. You can also compare your result with the true 
value.


What you will find:

For small numbers, Heron's method works really well. For larger numbers, the initial guess is 
too far off and it takes many more steps then we to get close to a useful approximation of the 
root. If the number is negative, Heron's method will yield guesses that diverge.  This underlies 
the need for a programming language to react to the result of its calculation.


Problem 4: 
Heron's method is just one of many numerical algorithms that proceeds by iteratively improving 
a guess. The Raphson-Newton method solves an equation  by starting with an initial 
guess  an improving it by calculating 


.


If we apply this method to the equation , we improve our guess by


a x2 + bx + c = 0

−b ± b2 − 4ac
2a

b2 − 4ac

S
S x

x S /x
x =

1
2

(x +
S
x

)

S x = S /2

f (x) = 0
x

x = x −
f (x)
f ′ (x)

x3 + x + 1 = 0



.


Your task is to write a program that asks the user for an initial guess and then updates the 
value of the guess seven times before printing it out. 

x = x −
x3 + x + 1

3x2 + 1


	Problem 1:
	Problem 2:
	Problem 3:
	Problem 4:

