
Modules
Thomas Schwarz, SJ



Modules
• A module is just a file with a .py extension


• It contains definitions for functions, constants, classes, 
et cet.


• It should be located on the Python path


• And here is how you find your python path:


• Import the module sys (the system module)


• Say sys.path



Interlude: Python Modules
• Predefined modules


• Python comes with many modules (see the docs)


•



Python Modules
• If I just import the module random, then I can use its 

functions by prefixing “random.”


•

Using the function random inside the module random



Python Modules
• If I want to avoid writing the module name I can use an 

“as” clause that redefines the name of the module within 
the script

Using the same function in the same module, 

but now after internally renaming the module



Python Modules
• By using the “from — import” clause, I can use variables 

and functions without repeating the module name

Importing the two functions uniform and randint from 

the random module.



Python Modules
• I could even import everything from a module


• But this can create havoc if I defined a function with the 
same name as a function in the module

A dangerous practice: Importing all 

functions from a module



Python Modules
• External modules:


• Everyone can build and publish python modules


• And publish it using pip or github


• This is where a lot of the power of python resides:


• Can easily find good modules to solve my problems


• Often, modules are implemented in C and made usable 
in Python



Python Modules
✦ To import from pip:


✦ go to terminal or command window

✦ Type: pip3.10 install the_module_name


✦ pip uses your current main python installation, which 
could be Python 2.7 on MacOS


✦ pip3 uses Python 3

✦ pip3.10 uses the Python 3.10 installed


✦ Installation is usually automatic, but can (rarely) fail

✦ E.g.: the module has not been maintained and does not 

match your architecture


