
Statements
Thomas Schwarz SJ

Statements
• Computers execute instructions

• An instruction (or sequence of instructions) corresponds
roughly to a statement

• Python statements are put on separate lines

• You can (but should not) put more statements on a line

• In which case you separate the statements with semi-
colons :

•;

Statements
• Types of statements we have already seen

• print statements

• import statements

• assignment statements

• conversion statements

Statements
• It is possible to combine several computation steps into a

single statement

• print(2**2**2)

• Combines a calculation and a print operation

• value = float(input('Enter a distance in yards'))

• The result of input is a string

• The string is converted to a floating point number

• And the resulting floating point number is assigned
to the variable value

Statements
• Example (continued)

• print(value * METERS_PER_YARD)

•We multiply (the contents of) value with the value in
the constant METERS_PER_YARD

• The result is stored in a temporary variable

• Not seen nor accessible by the programmer

• The result is then handed over to the print function in
order to be put out

Conversion Pattern
• Just as languages have idiomatic expressions, so do

computer programs

• Here is a program that converts Celsius to Fahrenheit

• Conversion formula is

tfahrenheit =
9 * tcelsius

5
+ 32

Conversion Pattern
• When you begin to program, you are usually at a loss of

what to do

• A trick:

• Execute the task with paper and pencil

• Then explain to your Teddy Bear what you just did

• Then emulate what you just explained as a program

Conversion Pattern
• Here is what we do:

• We get a temperature in Celsius

• This is a number

• We apply the formula

• We print out the result

Conversion Pattern
• One statement at a time:

my_input = input("Enter the temperature in Celsius: ")

temp_celsius = float(my_input)

temp_fahrenheit = 9*temp_celsius/5+32

print("The temperature is", temp_fahrenheit, "Fahrenheit.")

Conversion Pattern
• We can combine statements if we want

• We could go further, but this would trade in clarity for
shortness

celsius = float(input("Enter the temperature in Celsius"))

print("The temperature is", 9*celsius/5+32, "Fahrenheit.")

Conversion Pattern
• Another example:

• Europe measures gasoline consumption using liters per
kilometers

• US uses miles per gallons

• Let's write two conversion programs

• MPG -> LPHK

Conversion Pattern
• Derivation of formula:

• miles per gallon, liters per gallon, kilometers per
mile

• gallons per mile

• liters per kilometer

• liters per 100 kilometers

x λ μ

1
x
λ

μx
λ

0.01μx

Conversion Pattern
• Now we can use the same pattern

LITERS_PER_GALLON = 3.78541178

KILOMETERS_PER_MILE = 1.609344

mpg = float(input('please enter fuel consumption in miles per gallon: '))

lphk = (100*LITERS_PER_GALLON)/(KILOMETERS_PER_MILE * mpg)

print('The fuel consumption is', lphk, 'liters per kilometer')

Conversion Pattern
• This gives us an output that is too verbose

• We can overcome this by rounding the result of the
conversion

• You can find this by searching the web

• “Python3 rounding”

Conversion Pattern
• Better version:

• I am reusing the variable lphk

LITERS_PER_GALLON = 3.78541178

KILOMETERS_PER_MILE = 1.609344

mpg = float(input('please enter fuel consumption in miles per gallon: '))

lphk = (100*LITERS_PER_GALLON)/(KILOMETERS_PER_MILE * mpg)

lphk = round(lphk, 2)

print('The fuel consumption is', lphk, 'liters per kilometer')

