
Continue Statement
Thomas Schwarz, SJ

Continue
• A continue statement breaks out of the current execution

of the loop

• But goes to the next instance of the loop

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

First: i=1

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

If is triggered

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

go back to the beginning
of the loop

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

Second: i=2

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

We also jump back to the
beginning of the loop

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

Next i is 3

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

We skip the continue

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

and print 3, 9, 27

Continue
• Example 1:

for i in range(1, 100):
 if i % 3 != 0:
 continue
 print(i, i**2, i**3)

Then we go back and set i
to 4

Continue

Continue
• Continue and while can lend itself to an unintended

infinite loop

• Example 2:

i=1
while(i<100):
 if i % 3 == 0:
 continue
 print(i, i**2, i**3)
 i += 1

Continue
• Example 2:

i=1
while(i<100):
 if i % 3 == 0:
 continue
 print(i, i**2, i**3)
 i += 1

Intention: i=1, 2, 3, 4, 5, …
but skip over multiples of 3

Continue
• Example 2:

i=1
while(i<100):
 if i % 3 == 0:
 continue
 print(i, i**2, i**3)
 i += 1

We have not forgotten to
increment, but if we execute the
continue, we do not increment

Continue
• Example 2:

i=1
while(i<100):
 if i % 3 == 0:
 continue
 print(i, i**2, i**3)
 i += 1

If i = 3:
Execute continue, jump back to
the loop, condition is true, enter
the loop, execute continue, jump
back to the loop, condition is true,
enter the loop, execute continue,
jump back to the loop

Continue
• Use case:

• Searching for examples

• Can abort a loop early

Amicable Numbers
• A number is called perfect if it equals the sum of its

proper divisors

• This includes 1 but excludes the number itself

• For instance: 6 = 1+2+3

• As a “finger exercise”, we find the first 4 perfect numbers

• After this, our search will take a long time

• the fifth one is 33550336

• Then we go on to amicable numbers

Perfect Numbers
• An efficient algorithm uses number theory, so do not take

this as the latest in the art

• We are still learning

• When we program in Python, we can work incrementally

• But we still need to have a plan before we start
programming

• For a given number:

• Try out all numbers smaller and add them if they
divide the number

Perfect Numbers
• First, here is how we can calculate the sum of divisors:

number = 267
sum_of_divisors = 0
for divisor in range(1,267):
 if number%divisor == 0:
 sum_of_divisors += divisor
print(number, sum_of_divisors)

Perfect Numbers
number = 267
sum_of_divisors = 0
for divisor in range(1,267):
 if number%divisor == 0:
 sum_of_divisors += divisor
print(number, sum_of_divisors)

An accumulator

Perfect Numbers
number = 267
sum_of_divisors = 0
for divisor in range(1,267):
 if number%divisor == 0:
 sum_of_divisors += divisor
print(number, sum_of_divisors)

Run through 1, …, 266

Perfect Numbers
number = 267
sum_of_divisors = 0
for divisor in range(1,267):
 if number%divisor == 0:
 sum_of_divisors += divisor
print(number, sum_of_divisors)

Use floor division to
determine whether

divisor indeed divides
number

Perfect Numbers
number = 267
sum_of_divisors = 0
for divisor in range(1,267):
 if number%divisor == 0:
 sum_of_divisors += divisor
print(number, sum_of_divisors)

Add divisors to
sum_of_divisors

Perfect Numbers
• There is a small improvement, since we know that 1

divides the number

number = 267
sum_of_divisors = 1
for divisor in range(2,267):
 if number%divisor == 0:
 sum_of_divisors += divisor
print(number, sum_of_divisors)

Perfect Numbers
• We now can determine perfect numbers until 10,000

for number in range(2,10000):
 sum_of_divisors = 1
 for divisor in range(2,number):
 if number%divisor == 0:
 sum_of_divisors += divisor
 if number == sum_of_divisors:
 print(number, 'is perfect')

Perfect Numbers
• If we want to find the first n perfect numbers, we need to

count the perfect numbers we have found

• We convert the form to a while loop

• This means initializing and incrementing the loop
variable

• We jump out of the loop the moment we reach the
correct count

• This program will not work because it takes too
much time to find the fifth perfect number

Perfect Numbers
• Why does it take so long?

• For every number investigated, we check divisors

• If we investigate numbers up to , we make

 comparisons

• The square kills us: if we want to go up to , we
need about comparisons

• If any comparison takes 10 nanoseconds, we use up
0.3 years to find the fifth perfect number

i i − 2

N
N

∑
i=2

(i − 2) =
1
2 (N2 − 3N + 2)

109

1018

Perfect Numbers
• For the first 8, we need years

• An AWS a1 instance has 16 cores, so we need to have
 instances for a year

• Which costs us about dollars.

1.68483 × 1021

1.05302 × 1020

3.6923 × 1023

Amicable Numbers
• Two numbers and are amicable, if the sum of divisors

of is and the sum of divisors of is

• Smallest example is 220 and 264

• 220=1+2+3+4+6+8+11+12+22+24+33+44+66+88+132

• 264=1+2+4+5+10+11+20+22+44+55+110

m n
m n n m

Amicable Numbers
• To find amicable numbers up to 10000:

• Let number vary between 1 and 10000

• Calculate the sum of divisors of number, called
sum_of_div

• Then calculate the sum of divisors of sum_of_div

• If that number equals number, we have two amicable
numbers

Amicable Numbers
• Since amicable numbers come in pairs, impose additional

restriction .

• Since we start with and calculate , we can jump to
the next value for if .

m < n

m n
m m ≥ n

Amicable Numbers
count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Initializing number and count

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Enter an “infinite” loop

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Get the next number

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Find the sum of divisors of
number

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

We already now that this is not
a correct pair of amicable
numbers, so we can save

ourselves the work

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

We already now that this is not
a correct pair of amicable
numbers, so we can save

ourselves the work

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Find the sum of divisors of
sum_of_div

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Hurrah: we found one

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Hurrah: we found one
Print it out, count it

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

And if the count reaches 15, we
can break

count = 0
number = 2
while True:
 number += 1
 sum_of_div = 0
 for j in range(1,number):
 if number%j == 0:
 sum_of_div += j
 if sum_of_div <= number:
 continue
 suma2 = 0
 for j in range(1,sum_of_div):
 if sum_of_div%j == 0:
 suma2 += j
 if suma2 == number:
 print(number, sum_of_div)
 count += 1
 if count == 15:
 break

Improvement: Replace 15 with
a constant

Amicable Numbers
• Takes a noticeable amount of time

• Mathematicians still investigate
amicable numbers because so
many things are unknown

• But our simple “complete
enumeration” algorithms will not
be able to compete

220 284
1184 1210
2620 2924
5020 5564
6232 6368
10744 10856
12285 14595
17296 18416
63020 76084
66928 66992
67095 71145
69615 87633
79750 88730
100485 124155
122265 139815

Amicable Numbers
• Our code is also still clumsy

• It is too long with too many steps of logic

• That’s because we do not yet have the methods to
break it up

• Also: if that is the best example for a real use of
“continue”, it shows that “continue” is quite a bit rarer
than “break”

