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Great Ideas I: Computability
• Hilbert's Program


• Grundlagenkrise in Mathematics (~ 1900):

• How to be sure that Mathematics is true


• Attempts suffer from paradoxes

• Example Naïve Set Theory: Russel’s set of all sets that do not 

contain themselves as an element

• Answers to the Grundlagenkrise


• Intuitionism:

• Mathematics is a human activity, it does not discover universal truth


• Logicism:

• All mathematics derives from logic


• Formalism:

• Mathematics is a game with certain rules that conform to our thinking 

processes



Great Ideas I: Computability
• A formulation of all mathematics

• Completeness: 

• Proof that all true mathematical statements can be proved in the 

formalism.

• Consistency: 

• Proof that no contradiction can be obtained in the formalism of 

mathematics.

• Conservation: 

• Proof that any result about "real objects" obtained using reasoning 

about "ideal objects" (such as uncountable sets) can be proved 
without using ideal objects.


• Decidability

• There is an algorithm for deciding the truth or falsity of any 

mathematical statement.



Great Ideas I: Computability
• Hilbert’s program:

• Find an algorithm that can decide the truth or falsity of 

an arbitrary statement in first-order predicate calculus 
applied to integers


• Gödel’s incompleteness result (1931)

• No such effective procedure can exist



Great Ideas I: Computability
• Formalization of “effective procedure” 

• Each procedure should be described finitely

• Each procedure should consist of discrete steps, 

each of which can be carried out mechanically


• Number of proposals

• λ-calculus

• Turing machines (in different versions)

• RAM machines (computers with infinite memory) 



Great Ideas I: Computability
• Church Turing Result:

• λ-calculus and Turing machines have the same 

computational power


• Church Hypothesis

• Turing machines are equivalent to our intuitive notion of 

a computer

• What is computable by a human is what is computable 

by a computer which is what is computable by a Turing 
machine



Great Ideas I: Computability
• Early career is as a Mathematical Logician


• Idea:  What is computable


• Proposes the Turing machine as a simple example of 
what a Mathematician can calculate (without the 
brilliance)


• I.e.: A very simple formal way to compute


• Idea: If something is possible in that simple system 
then a human Mathematician can do it as well



Great Ideas I: Computability
• Entscheidungsproblem: Can every true statement in first order logic 

(with quantifiers) be derived in first order logic


• Example for first order logic:


• There are only  prime numbers.


• Is equivalent to:


• There exists , there exists  such that if  is 
a prime, then there exists an index  with  such 
that .


• Answers a dream of Gottfried Leibniz: Build a machine that could 
manipulate symbols in order to determine the truth values of 
mathematical statements.

n

n p1, p2, p3, …, pn p
i 1 ≤ i ≤ n

pi = p



Great Ideas I: Computability
• Made it plausible that a Mathematician is not more 

powerful than the Turing calculus


• Proved limitations on what a Turing calculus can achieve



Post-Turing Machine
• A Turing machine consists of

• An infinitely-long tape divided into squares that are 

initially blank (denoted by a symbol ‘b’)

• A read-write head that can read and write symbols 

• A control unit that consists of a state machine

• In a given state and when reading a given symbol:

• The machine goes to a new state

• The machine writes a new symbol

• The machine moves to the left or the right by one 

step.  



Post-Turing Machines
• Turing machine input

• A string on the tape, with all other symbols being 

blanks.


• Turing machine output

• Turing machines can make decisions:

• By writing them on the tape

• By entering an “accepting” or a “rejecting” state

• These possibilities are actually equivalent 

http://morphett.info/turing/turing.html



Post-Turing Machines
• Turing machine programs:

• A program consists of a set of transition rules:

• Current state, Current Symbol —> New State, New 

Symbol, Move


• Note: All Turing machine programs are finite



Post-Turing Machine
• Despite its simplicity, a Turing machine can imitate any 

computer (known today)



Post-Turing Machine
• Turing machine programs


• consists of lines 


<curr. state> <curr. symb> <new symb> <dir> <new state>



Post-Turing Machine
• People have build Turing machines 


• For Fun 


• Because we can emulate Turing machines much 
faster


• http://aturingmachine.com


• https://www.youtube.com/watch?v=2PjU6DJyBpw


• https://www.youtube.com/watch?
v=E3keLeMwfHY&t=75s


• https://www.youtube.com/watch?v=vo8izCKHiF0



Great Ideas I: Computability
• Results:


• There are problems that cannot be computed


• But the problem is in principle solvable


• Halting problem: Will a Turing machine on a given input 
halt or will it continue for ever?


• In many concrete cases, can be solved.


