
Introduction to
Computer Science

Thomas Schwarz, SJ

Marquette University

Great Ideas I: Computability
• Hilbert's Program

• Grundlagenkrise in Mathematics (~ 1900):

• How to be sure that Mathematics is true

• Attempts suffer from paradoxes

• Example Naïve Set Theory: Russel’s set of all sets that do not

contain themselves as an element

• Answers to the Grundlagenkrise

• Intuitionism:

• Mathematics is a human activity, it does not discover universal truth

• Logicism:

• All mathematics derives from logic

• Formalism:

• Mathematics is a game with certain rules that conform to our thinking

processes

Great Ideas I: Computability
• A formulation of all mathematics

• Completeness:

• Proof that all true mathematical statements can be proved in the

formalism.

• Consistency:

• Proof that no contradiction can be obtained in the formalism of

mathematics.

• Conservation:

• Proof that any result about "real objects" obtained using reasoning

about "ideal objects" (such as uncountable sets) can be proved
without using ideal objects.

• Decidability

• There is an algorithm for deciding the truth or falsity of any

mathematical statement.

Great Ideas I: Computability
• Hilbert’s program:

• Find an algorithm that can decide the truth or falsity of

an arbitrary statement in first-order predicate calculus
applied to integers

• Gödel’s incompleteness result (1931)

• No such effective procedure can exist

Great Ideas I: Computability
• Formalization of “effective procedure”

• Each procedure should be described finitely

• Each procedure should consist of discrete steps,

each of which can be carried out mechanically

• Number of proposals

• λ-calculus

• Turing machines (in different versions)

• RAM machines (computers with infinite memory)

Great Ideas I: Computability
• Church Turing Result:

• λ-calculus and Turing machines have the same

computational power

• Church Hypothesis

• Turing machines are equivalent to our intuitive notion of

a computer

• What is computable by a human is what is computable

by a computer which is what is computable by a Turing
machine

Great Ideas I: Computability
• Early career is as a Mathematical Logician

• Idea: What is computable

• Proposes the Turing machine as a simple example of
what a Mathematician can calculate (without the
brilliance)

• I.e.: A very simple formal way to compute

• Idea: If something is possible in that simple system
then a human Mathematician can do it as well

Great Ideas I: Computability
• Entscheidungsproblem: Can every true statement in first order logic

(with quantifiers) be derived in first order logic

• Example for first order logic:

• There are only prime numbers.

• Is equivalent to:

• There exists , there exists such that if is
a prime, then there exists an index with such
that .

• Answers a dream of Gottfried Leibniz: Build a machine that could
manipulate symbols in order to determine the truth values of
mathematical statements.

n

n p1, p2, p3, …, pn p
i 1 ≤ i ≤ n

pi = p

Great Ideas I: Computability
• Made it plausible that a Mathematician is not more

powerful than the Turing calculus

• Proved limitations on what a Turing calculus can achieve

Post-Turing Machine
• A Turing machine consists of

• An infinitely-long tape divided into squares that are

initially blank (denoted by a symbol ‘b’)

• A read-write head that can read and write symbols

• A control unit that consists of a state machine

• In a given state and when reading a given symbol:

• The machine goes to a new state

• The machine writes a new symbol

• The machine moves to the left or the right by one

step.

Post-Turing Machines
• Turing machine input

• A string on the tape, with all other symbols being

blanks.

• Turing machine output

• Turing machines can make decisions:

• By writing them on the tape

• By entering an “accepting” or a “rejecting” state

• These possibilities are actually equivalent

http://morphett.info/turing/turing.html

Post-Turing Machines
• Turing machine programs:

• A program consists of a set of transition rules:

• Current state, Current Symbol —> New State, New

Symbol, Move

• Note: All Turing machine programs are finite

Post-Turing Machine
• Despite its simplicity, a Turing machine can imitate any

computer (known today)

Post-Turing Machine
• Turing machine programs

• consists of lines

<curr. state> <curr. symb> <new symb> <dir> <new state>

Post-Turing Machine
• People have build Turing machines

• For Fun

• Because we can emulate Turing machines much
faster

• http://aturingmachine.com

• https://www.youtube.com/watch?v=2PjU6DJyBpw

• https://www.youtube.com/watch?
v=E3keLeMwfHY&t=75s

• https://www.youtube.com/watch?v=vo8izCKHiF0

Great Ideas I: Computability
• Results:

• There are problems that cannot be computed

• But the problem is in principle solvable

• Halting problem: Will a Turing machine on a given input
halt or will it continue for ever?

• In many concrete cases, can be solved.

