Introduction to Computer Science

Thomas Schwarz, SJ Marquette University

- Hilbert's Program
 - *Grundlagenkrise* in Mathematics (~ 1900):
 - How to be sure that Mathematics is true
 - Attempts suffer from paradoxes
 - Example Naïve Set Theory: Russel's set of all sets that do not contain themselves as an element
 - Answers to the Grundlagenkrise
 - Intuitionism:
 - Mathematics is a human activity, it does not discover universal truth
 - Logicism:
 - All mathematics derives from logic
 - Formalism:
 - Mathematics is a game with certain rules that conform to our thinking processes

- A formulation of all mathematics
- Completeness:
 - Proof that all true mathematical statements can be proved in the formalism.
- Consistency:
 - Proof that no contradiction can be obtained in the formalism of mathematics.
- Conservation:
 - Proof that any result about "real objects" obtained using reasoning about "ideal objects" (such as uncountable sets) can be proved without using ideal objects.
- Decidability
 - There is an algorithm for deciding the truth or falsity of any mathematical statement.

- Hilbert's program:
 - Find an algorithm that can decide the truth or falsity of an arbitrary statement in first-order predicate calculus applied to integers
- Gödel's incompleteness result (1931)
 - No such effective procedure can exist

- Formalization of "effective procedure"
 - Each procedure should be described finitely
 - Each procedure should consist of discrete steps, each of which can be carried out mechanically
 - Number of proposals
 - λ-calculus
 - Turing machines (in different versions)
 - RAM machines (computers with infinite memory)

- Church Turing Result:
 - λ-calculus and Turing machines have the same computational power
- Church Hypothesis
 - Turing machines are equivalent to our intuitive notion of a computer
 - What is computable by a human is what is computable by a computer which is what is computable by a Turing machine

- Early career is as a Mathematical Logician
 - Idea: What is computable
 - Proposes the Turing machine as a simple example of what a Mathematician can calculate (without the brilliance)
 - I.e.: A very simple formal way to compute
 - Idea: If something is possible in that simple system then a human Mathematician can do it as well

- Entscheidungsproblem: Can every true statement in first order logic (with quantifiers) be derived in first order logic
 - Example for first order logic:
 - There are only *n* prime numbers.
 - Is equivalent to:
 - There exists n, there exists $p_1, p_2, p_3, \dots, p_n$ such that if p is a prime, then there exists an index i with $1 \le i \le n$ such that $p_i = p$.
- Answers a dream of *Gottfried Leibniz*: Build a machine that could manipulate symbols in order to determine the truth values of mathematical statements.

- Made it plausible that a Mathematician is not more powerful than the Turing calculus
- Proved limitations on what a Turing calculus can achieve

- A Turing machine consists of
 - An infinitely-long tape divided into squares that are initially blank (denoted by a symbol 'b')
 - A read-write head that can read and write symbols
 - A control unit that consists of a state machine
 - In a given state and when reading a given symbol:
 - The machine goes to a new state
 - The machine writes a new symbol
 - The machine moves to the left or the right by one step.

- Turing machine input
 - A string on the tape, with all other symbols being blanks.

- Turing machine output
 - Turing machines can make decisions:
 - By writing them on the tape
 - By entering an "accepting" or a "rejecting" state
 - These possibilities are actually equivalent

http://morphett.info/turing/turing.html

- Turing machine programs:
 - A program consists of a set of transition rules:
 - Current state, Current Symbol —> New State, New Symbol, Move

• Note: All Turing machine programs are finite

Despite its simplicity, a Turing machine can imitate any computer (known today)

- Turing machine programs
 - consists of lines

<curr. state> <curr. symb> <new symb> <dir> <new state>

- People have build Turing machines
 - For Fun
 - Because we can emulate Turing machines much faster
 - http://aturingmachine.com
 - https://www.youtube.com/watch?v=2PjU6DJyBpw
 - https://www.youtube.com/watch?
 v=E3keLeMwfHY&t=75s
 - https://www.youtube.com/watch?v=vo8izCKHiF0

- Results:
 - There are problems that cannot be computed
- But the problem is in principle solvable
 - Halting problem: Will a Turing machine on a given input halt or will it continue for ever?
 - In many concrete cases, can be solved.