
Operating Systems
Thomas Schwarz, SJ

History
• Early computers

• User load their program and run it

• Assemblers, compilers, and linkers are software
modules used to transform to machine code

• As performance increases:

• Useful proportion = Time to use a computer : Time to
load a computer becomes less

• Another machine program: Run queue that selects which
e.g. magnetic tape to load next job

History
• Example: Leo 1 (Lyons Electronic Office)

• Modeled on Cambridge EDSAC built by 1951

• First computer dedicated to commercial business
applications

• Multiple Input/Output (I/O) buffers: paper readers and
punches, punched card readers and punches, + (later)
magnetic tape

• Processed daily orders, payroll, inventory

History
• IBM 701 System Monitor (1955):

• Checks running jobs and resource consumption

• GM-NAA I/O General Motors: First Operating System (OS)
[1956]:

• Provides Batch processing

• Automatically execute a new program once current job
has finished

• Built using shared functions that provide access to various
I/O devices

• "Resident" program: Runs always and calls user jobs

History
• SHARE Operating System (SOS) 1959:

• Allows sharing of programs

• Early OS:

• Diversity: Each computer type had its own OS

• 1960s: IBM concentrates on System/360 series

• Decides on a single OS but:

• Encounters many difficulties

• Ends up with at least four OS

History
• Time sharing:

• Sharing of a computer among many users at the same
time

• Needs the capability to connect multiple terminals to
the same machine

• Computer spends a small time slice on each user

• State of interaction with user is stored after slice is
up and reloaded when it is that user's turn

• Implemented after many tries in the early 1970s

History
• Time sharing:

• Includes first security problem:

• How to protect one user from accessing another user's
resources (files, programs)

• To prevent unintentional damage

• Central idea: Permissions: what rights has a user over an
entity

• Dealt with access control lists: who has rights on this
object

• Dealt with capabilities: what rights on what objects has
this entity

Unix
• Unix (AT&T Bell Labs, late 1960s / UC Berkeley):

• A simpler version of Multics: less performance
problems

• Written in C : a higher level language, so it is easy to
port

• Ancestor of a large family of OS including MacOS
and Linux

Dos / Windows
• 1980: IBM is worried about loosing out the personal

computer market such as it lost the mini-computer
market

• Pushes the IBM PC

• Selects Intel 8086 because it was available

• Needs an OS

• Decides to find an outside provider

• because "money is in hardware, not software"

Dos / Windows
• Disk Operating System (DOS)

• Single user system targeting Intel 8086 using floppy
disks

• Developed through six different versions

• Windows (Graphical User Interface)

• Slow development towards a consumer facing and a
server facing market

Linux
• Torvalds 1991

• Based on the Minimal Unix -- MINIX teaching operating
system

• 1983: Stallman: "free" software foundation with GNU
General Public Licence

• Free: can be modified

• Can be commercial

OS Functions
• Modern Operating System Functions

• Multi-tasking:

• Programs can run concurrently

• Each program receives a slice of CPU time

• Program stops when slice is up or when a long lasting
command is issued (such as getting data from a disk,
waiting for IO)

• Programs can be put to sleep and OS wakes them up
when certain conditions are true (e.g. network packet
arrived)

• Programs can have different priorities

OS Functions
• Multi-user

• OS can maintain separation between different users

• OS mediates privileges:

• Access rights

• Access Control Lists

• Capabilities

OS Functions
• Real-time OS

• Mechanisms to guarantee programs to finish in time

• E.g.: Apollo 11 Guidance Computer

OS Components
• Kernel

• Random-access memory (RAM)

• Kernel decides which process can us which memory

• How to deal with lack of memory

OS Components
• Input/Output Devices

• Keyboards, mouses, storage, printer, USB devices,
network adapters, displays

• Programmed with device drivers

• Kernel mediates requests from applications to access
I/O devices

OS Components
• Memory Management

• Only kernel has full access to the memory system

• Paging / Segmentation:

• Memory is divided in abstract pages (of 4KB)

• Pages can be in DRAM or temporarily in disk

• Virtual Addressing:

• User process uses virtual addresses that kernel
translates to actual addresses

• Allows kernel control of who can access what memory

OS Components
• System calls:

• A user process request a service from the OS kernel

• Cannot call this service directly

• Creates a system call through a systems library

• Call places parameters in a register, then uses a hardware
instruction that is a CPU interrupt

• Control passes to the kernel

• Kernel does the job

• Restarts the user process

OS Components

OS Components

OS Components
• Process Management

• User application run one or more process

• Each process consists of one or more threads -
continuous strands of execution

• Modern CPUs allow several threads to execute in
parallel

• OS determines which process can run

OS Components

