Descriptive Statistics
with Python

Thomas Schwarz, SJ

Statistics Modules

 Python has a number of statistics modules
A simple one is called statistics

e Use pip3 install statistics

Last login: Tue Mar 23 17:45:07 on ttys000
thomasschwarz@Peter-Canisius ~ % pip3 install statistics
Collecting statistics

Downloading statistics-1.0.3.5.tar.gz (8.3 kB)
Collecting docutils>=0.3

Downloading docutils-0.16-py2.py3—-none-any.whl (548 kB)

| I | 548 kB 6.2 MB/s
Using legacy 'setup.py install' for statistics, since package 'wheel' is not ins
talled.
Installing collected packages: docutils, statistics
Running setup.py install for statistics ... done

Successfully installed docutils-0.16 statistics-1.0.3.5
thomasschwarz@Peter-Canisius ~ % |

Example

e Population of state capitals
e Use a weird file available at

e https://tschwarz.mscs.mu.edu/Classes/COSC1000/
Modules/capitals.csv

e Made available from someone who took it from
Wikipedia

Example

* Printing out line for line
 We find encoding errors

e So we that the encoding to 'latin’

with open('capitals.csv', encoding='latin') as infile:
for line 1n 1nfile:
print (1line)

Example

e Two title lines

 Then data: But notice the string literals with commata

1,Alabama, AL, 1819, Montgomery, 1846,155.4,No,"2,05,764","3,74,536"
, Blrmingham 1s the state's largest city

e S0, it is a comma-separated file with commas in strings

* |Instead of writing our own interpreter, we split the file
along *

* This works because we only want to extract the
population number

Example

1,Alabama,AL,1819,Montgomery,1846,155.4,No,"2,05,764","3,74,536"

* We are interested in getting the second value

with open('capitals.csv', encoding='latin') as infile:
infile.readline ()
infile.readline ()
for line 1in 1nfile:
values = line.split('"")
print (values)

['l,Alabama,AL,1819,Montgomery,13846,155.4,No, "', '2,05,7064', ',",
'3,74,536', ",Birmingham is the state's largest city\n"]

Example

with open('capitals.csv', encoding='latin') as 1infile:
infile.readline ()
infile.readline ()
for line 1n 1nfile:
values = line.split('"")
print (values|[1])

205,764 * A weird Indian looking

31,275 format
14,45, 632

1,93,524

4,66,488

Example

e Creating our own function to remove commata

def remove (line, symbol):

result = []
for letter 1n line:
1f letter != symbol:

result.append(letter)
return ''.joiln(result)

Example

* Now we place the numbers into an array

pops = []
with open('capitals.csv', encoding='latin') as infile:
infile.readline ()
infile.readline ()
for line 1in 1infile:
value = remove (line.strip () .splat('"") [1],"',")
pops.append (int (value))

Example

* Finally, we can apply statistics

print ('mean', stats.mean (pops))

print ('median', stats.median (pops))

print ('pstdev', stats.pstdev (pops))
(

print ('quantiles', stats.quantiles (pops))

Statistics

e Descriptive Statistics:
e Mean (arithmetic mean)
* Median (half the values above, half the values below)
e Quantiles
e 25% below, 75% above
* 50% below, 50% above
e /5% below, 25% above

e Standard Deviation: Measure for the average distance of
a point from the mean

Statistics

e Median is liked because it is less sensitive to outliers

 Quantiles and standard deviation help with visualizing
distrik

leb6
........ mean
1.4 1 .
........ medlan
25% quantile
1.2 1 75% quantile
1.0 A
0.8
0.6
0.4 |
021 p il M. '"ZZZZ'IZIZZ ﬁfﬁI"fffﬁﬁ N |fﬁiﬁ"'fﬁﬁﬁf -

0.0 -

Example: Visualization

* We want to present the values:
e Use a bar chart

e Needs X and Y values

e X numbers between 1 and 50 -

e Y population numbers

® plt.bar (range(l,51), pops)

Example

e To draw the mean and median:
e Plotaline

e Using abbreviations

plt.bar (range(1l,51), pops)

plt.plot([0,50], 2*[stats.mean(pops)], 1lw='1l', 1ls=':",
label="mean', c='red')

plt.plot([0,50], 2*[stats.median(pops)], 1lw='1l', 1s=':"',
label="'median', c='green')

plt.legend()

plt.show ()

leb

1.4 ~

1.2 -

1.0 ~

0.8 -

0.6 A

0.4 -

0.2 A

0.0 -

10

20

30

40

mean
median

50

Example

e Box and whisker plot: Box extends from lower to upper
quartile with line for median

 Whiskers show range, with "fliers" (outliers) above and

below

plt.boxplot (pops)
plt.show () = -

1.4 1

1.2

1.0 A

0(0)

0.8

0.6 - 8

0.4 1

0.2 1

O-O - _I_

