
Descriptive Statistics
with Python

Thomas Schwarz, SJ

Statistics Modules
• Python has a number of statistics modules

• A simple one is called statistics

• Use pip3 install statistics

Example
• Population of state capitals

• Use a weird file available at

• https://tschwarz.mscs.mu.edu/Classes/COSC1000/
Modules/capitals.csv

• Made available from someone who took it from
Wikipedia

Example
• Printing out line for line

• We find encoding errors

• So we that the encoding to 'latin'

with open('capitals.csv', encoding='latin') as infile:

 for line in infile:

 print(line)

Example
• Two title lines

• Then data: But notice the string literals with commata

• So, it is a comma-separated file with commas in strings

• Instead of writing our own interpreter, we split the file
along "

• This works because we only want to extract the
population number

1,Alabama,AL,1819,Montgomery,1846,155.4,No,"2,05,764","3,74,536"
,Birmingham is the state's largest city

Example

• We are interested in getting the second value

1,Alabama,AL,1819,Montgomery,1846,155.4,No,"2,05,764","3,74,536"
,Birmingham is the state's largest city

['1,Alabama,AL,1819,Montgomery,1846,155.4,No,', '2,05,764', ',',
'3,74,536', ",Birmingham is the state's largest city\n"]

with open('capitals.csv', encoding='latin') as infile:

 infile.readline()

 infile.readline()

 for line in infile:

 values = line.split('"')

 print(values)

Example
with open('capitals.csv', encoding='latin') as infile:

 infile.readline()

 infile.readline()

 for line in infile:

 values = line.split('"')

 print(values[1])

2,05,764

31,275

14,45,632

1,93,524

4,66,488

...

• A weird Indian looking
format

Example
• Creating our own function to remove commata

def remove(line, symbol):

 result = []

 for letter in line:

 if letter != symbol:

 result.append(letter)

 return ''.join(result)

Example
• Now we place the numbers into an array

pops = []

with open('capitals.csv', encoding='latin') as infile:

 infile.readline()

 infile.readline()

 for line in infile:

 value = remove(line.strip().split('"')[1],',')

 pops.append(int(value))

Example
• Finally, we can apply statistics

print('mean', stats.mean(pops))

print('median', stats.median(pops))

print('pstdev', stats.pstdev(pops))

print('quantiles', stats.quantiles(pops))

Statistics
• Descriptive Statistics:

• Mean (arithmetic mean)

• Median (half the values above, half the values below)

• Quantiles

• 25% below, 75% above

• 50% below, 50% above

• 75% below, 25% above

• Standard Deviation: Measure for the average distance of
a point from the mean

Statistics
• Median is liked because it is less sensitive to outliers

• Quantiles and standard deviation help with visualizing
distributions

Example: Visualization
• We want to present the values:

• Use a bar chart

• Needs X and Y values

• X numbers between 1 and 50

• Y population numbers

• plt.bar(range(1,51), pops)

Example
• To draw the mean and median:

• Plot a line

• Using abbreviations

plt.bar(range(1,51), pops)

plt.plot([0,50], 2*[stats.mean(pops)], lw='1', ls=':',
label='mean', c='red')

plt.plot([0,50], 2*[stats.median(pops)], lw='1', ls=':',
label='median', c='green')

plt.legend()

plt.show()

Example

Example
• Box and whisker plot: Box extends from lower to upper

quartile with line for median

• Whiskers show range, with "fliers" (outliers) above and
below
plt.boxplot(pops)

plt.show()

