
Strings

Strings
• Basic data type in Python

• Strings are immutable, meaning they cannot be shared

• Why?

• It’s complicated, but string literals are very frequent.
If strings cannot be changed, then multiple
occurrences of the same string in a program can be
placed in a single memory location.

• More importantly, strings can serve keys in key-
value pairs.

• Don’t worry, we are going to see what this means.

String Literals
• String literals are defined by using quotation marks

• Example:

• To create strings that span newlines, use the triple
quotation mark

String Methods
• There are a number of methods for strings. Most of them are self-explaining

• s.lower(), s.upper() : returns the lowercase or uppercase version of the
string

• s.strip(): returns a string with whitespace removed from the start and end

• s.isalpha()/s.isdigit()/s.isspace(): tests if all the string chars are
in the various character classes

• s.startswith('other'), s.endswith('other') : tests if the string
starts or ends with the given other string

• s.find('other') : searches for the given other string (not a regular
expression) within s, and returns the first index where it begins or -1 if not
found

• s.replace('old', ‘new'): returns a string where all occurrences of 'old'
have been replaced by 'new'

Strings and Characters
• Python does not have a special type for characters

• Characters are just strings of length 1.

Accessing Elements of
Strings

• We use the bracket notation to gain access to the
characters in a string

• a_string[3] is character number 3, i.e. the fourth
character in the string

String Processing
• Since strings are immutable, we process strings by

turning them into lists, then processing the list, then
making the list into a string.

• String to list: Just use the list-command

String Processing
• Turn lists into strings with the join-method

• The join-method has weird syntax

• a_string = “”.join(a_list)

• The method is called on the empty string “”

• The sole parameter is a list of characters or strings

• You can use another string on which to call join

• This string then becomes the glue
gluestr.join([str1, str2, str3, str4, str5])

str1 str2 str3 str4 str5gluestr gluestr gluestr gluestr

String Processing
• Examples

String Processing
• Procedure:

• Take a string and convert to a list

• Change the list or create a new list

• Use join to recreate a new string

• Alternative Procedure:

• Build a string one by one, using concatenation (+ -operator)

• Creates lots of temporary strings cluttering up memory

• Which is bad if you are dealing with large strings.

String Processing
• Example: Given a string, change all vowels to increasing

digits.

• This is used as a (not very secure) password generator

• Examples:

• Wisconsin —> W1sc2ns3n

• AhmedabadGujaratIndia —>
1hm2d3b4dG5j6r7t8nd90

String Processing
• Implementation:

• Define an empty list for the result

• We return the result by changing from list to string

def pwd1(string):
 result = []

 return "".join(result)

String Processing
• Need to keep a counter for the digits

def pwd1(string):
 result = []
 number = 1

String Processing
• Now go through the string with a for statement

• Create the list that will be returned converted into a string

def pwd1(string):
 result = []
 number = 1
 for character in string:

#append to result here

 return "".join(result)

String Processing
• We either append the letter from the string or we append

the current integer, of course cast into a string

def pwd1(string):
 result = []
 number = 1
 for character in string:
 if character not in "aeiouAEIOU":
 result.append(character)
 else:
 result.append(str(number))
 number = (number+1)%10
 return "".join(result)

String Processing
• Argot

• A variation of a language that is not understandable to
others

• E.g. Lufardo — an argot from Buenos Aires that uses
words from Italian dialects

• Invented originally to prevent guards from
understanding the inmates

• Some words are just based on changing words

• vesre - al reves (backwards)

• chochamu - vesre for muchacho (chap)

• lorca - vesre for calor (heat)

String Processing
• Argot

• Pig Latin

• Children’s language that uses a scheme to change
English words

• Understandable to practitioners, but not to those
untrained

String Processing
• Argot:

• Efe-speech

• A simple argot from Northern Argentina no longer in
use

• Take a word: “muchacho”

• Replace each vowel with a vowel-f-vowel
combination

• “Muchacho” becomes Mufuchafachofo

• “Aires” becomes “Afaifirefes”

String Processing
• Implementing efe-speech

• Walk through the string, modifying the result list

def efe(string):
 result = []
 for character in string:
 result.append(SOMETHING)
 return "".join(result)

String Processing
• We need to be careful about capital letters

• We can use the string method lower

• Which you find with a www-search

def efe(string):
 result = []
 for character in string:

 elif character in "AEIOU":
 result.append(character+'f'+character.lower())

 return "".join(result)

String Processing
def efe(string):
 result = []
 for character in string:
 if character in "aeiou":
 result.append(character+'f'+character)
 elif character in "AEIOU":
 result.append(character+'f'+character.lower())
 else:
 result.append(character)
 return "".join(result)

String Processing

Slices
• We already know two sequence types: lists and strings

• Sequences can be sliced: A slice is a new object of the
same type, consisting of a subsequence

• Use a bracket cum colon notation to define slices.

• sequence[a:b] are all elements starting with index a and
stoping before index b.

Slices
• String slices

• Number before colon:

• Start

• Number after colon:

• Stop

• Default value before colon:

• Start with first character

• Default value after colon

• End with the string

Slices
• String slices:

• Optional third parameter is
Stride

• First character is
character 1

• Next one is character 1+2

• Next one is character
1+2+2

• Next one would be
character 1+2+2+2, but
that one is >= the stop
value.

M i l w a u k e e

0 1 2 3 4 5 6 7 8

a_string

a_string[1:7:2] i w u

start value is index 1

stop value is index 7

stride is 2

Slices
• Negative strides are allowed.

• Create a new string that is reversed using default
values

Slices
• Negative strides are allowed

• Character 20 is “I” of India

• Next character is 17, the “t” in Gujarat

• Stop before character 3 (the fourth character)
Ahmedabad, Gujarat, India

Lists and Strings
• Both lists and strings are sequences

• Length: len(a_string), len(a_list)

• Concatenation: a_string + b_string, a_list + b_list

• Repetition: 3*a_string, 3*a_list

• Membership: if ‘x’ in a_string, if a in a_list

• Iteration: for ele in a_string, for ele in a_list

Lists and Strings
• Strings are immutable

• Lists are mutable

a_string[2] = ‘x’

a_list[2] = ‘x’

Activities 1
• Write a program that checks (returns True/False) whether

a string ends with .edu

• one solution with endswith

• one solution using a slice and comparing strings

• one solution using indices and comparing characters

Activities 1 Solutions
def check1(a_string):
 return a_string.endswith('.edu')

def check2(a_string):
 return a_string[-4:] == '.edu'

def check3(a_string):
 return (a_string[-4] == '.' and a_string[-3] == 'e' and
 a_string[-2] == 'd' and a_string[-1] == 'u')

Activities 2
• A function counter that counts the number of consonants

in a string

Activities 2 Solutions
def cons(a_string):
 count = 0
 for letter in a_string:
 if letter.lower() in 'bcdfghjklmnpqrstvwxyz':
 count += 1
 return count

Activities
• A function that removes all vowels in a string

Activities 3 Solutions

def rem_vol(a_string):
 result = []
 for letter in a_string:
 if letter not in 'aeiouAEIOU':
 result.append(letter)
 return ''.join(result)

