
Midterm 1
Preparation 1

Highlights from what we have seen so far

including a list of typical errors to avoid

Variables, Operations,
Types

• Every variable in Python has a type

• But the type is not declared

• The same variable name can stand for objects of
different types

• We can change between types by casting

Variables, Operations,
Types

• Pattern 1:

• Processing user input

• The input function returns a string

• We often need to cast this string into another type

• In this sample, the type of km switches from string to
float.

km = input("Enter distance in kilometers: ")
km = float(km)
print("The distance in miles is {:4.3f} miles".format(km*0.621371))

Variables, Operations,
Types

• The meaning of operands can depend on the type

• Example:

• If both a and b are numerical types (int or float) then the
asterisk is a multiplication

• If one is a string and the other an integer, then the
asterisk stands for a replication operation

print(a*b)

Flow Control
• Python uses if-statements and for- and while-loops for

flow control

• Python blocks are defined by indentation

• Indentation needs to be consistent within a Python
module

Flow Control
• Indentation matters a lot

• The placement of the else decides to which if it belongs!

choice = int(input("Enter a number between 1 and 3 "))
if choice != 1:
 if choice == 2:
 print("Well chosen")
 else:
 print("Horrible choice")

choice = int(input("Enter a number between 1 and 3 "))
if choice != 1:
 if choice == 2:
 print("Well chosen")
else:
 print("Horrible choice")

Flow Control
• The range-function creates an iterator

• There is no problem having a horribly large range
because no memory is wasted

• The first argument is the start (no problem here)

• Default is 0

• The second and sometimes only argument is the stop
value, not the last value

• The third argument is the stride, this can be negative

Flow Control
• Almost any expression can be automatically converted

into a boolean value

• This is perfectly legitimate

• For odd n we multiply by three and add one

• For even n we divide by 2 (as integers)

def successor(n):
 if n%2:
 return 3*n+1
 else:
 return n//2

if n is odd, n%2 is 1, and
therefore True

Flow Control
• If you want to test whether a list is not empty, the

Pythonesque way is to say:

if lista:
print(“list is not empty”)

Flow Control
• While loops:

• While the condition is true, execute the while-block

• A frequent error is to forget to update the condition

• This while loop never terminates because the
condition is always true and never changes

def sum(n):
 counter = 1
 accu = 0
 while counter < 10:
 accu + 1/(counter**2+counter + 1)
 return accu

Flow Control
• Breaking out of a while loop:

• We can break out of the while loop by using the
command break

• We can break out of the current execution of the while
loop, and continue with the next execution of the while
loop using the command continue

Flow Control
• Pattern:

• Calculating sums and products

• Use an accumulator (the sum or product) properly
initialized

• 0 for summing, 1 for multiplying

• Add inside a for loop

Flow Control
• Calculating

100

∑
i=1

i4 = 1 + 16 + … + 100000000

def sum():
 accu = 0
 for i in range(1, 101):
 accu += i**4
 return accu

Initializing the accu to zero, because
we are summing up

This is the stop value, the sum only
goes to 100

Accumulating into the accumulator
Returning the value outside of the for

loop

Functions
• Python functions are a vast subject.

• Up till now, we only see a small part of it.

• Functions are defined using the def command, followed by
the function name, and a pair of parameters that encloses a
potentially empty list of parameters.

• Later, we will learn how to

• Define anonymous functions

• Use named arguments

• Use variable number of arguments

• Expand lists and dictionaries into arguments

Functions
• Pattern:

• Transformations

• Change measurements

def km2m(km):
 return km*0.621371

Function Name

List of parameters

Return value calculated in return
statement

