More on Functions

Thomas Schwarz, SJ
Marqguette University

Functions of Functions

* Functions are full-fledged objects in Python

* This means you can pass functions as parameters

Example: Calculate the average of the values of a function
at -n, -n+1, -n+2, ..., -2,-1,0,1,2, ... ,n-2, n-1, n

* The function needs to be a function of one integer
variable

Example:
e n =2, function is squaring

e Returnvalueis ((=2)*+ (=1)?>+0*+1°+2%)/5=2

Functions of Functions

e \We first define the averaging function with two arguments
* The numbern

e The function over which we average, called func

def averaging(n, func):

Functions of Functions

e |nside the function, we create an accumulator and a loop
index, running from -n to n.

def averaging(n, func):
accu = 0
for 1 1n range(-n, n+l):

Functions of Functions

e |nside the loop, we modify the accumulator accu by
adding the value of the function at the loop variable.

def averaging(n, func):
accu = 0
for 1 1n range(-n, n+l):
accu += func (i)

Functions of Functions

* There are 2n+1 points at which we evaluate the function.

 We then return the average as the accumulator over the
number of points

def averaging(n, func):
accu = 0
for 1 1n range(-n, n+l):
accu += func (i)
return accu/ (2*n+1)

Functions of Functions

e |n order to try this out, we need to use a function

e \We can just define one in order to try out our averaging
function

def square (number) :
return number*number

def averaging(n, func):
accu = 0
for 1 1n range(-n, n+l):
accu += func (i)
return accu/ (2*n+1)

print (averaging (2, square))

Local and Global Variables

A Python function is an independent part of a program
e |t has its own set of variables
e (Called local variables

¢ |t can also access variables of the environment in which
the function is called.

e These are global variables
e The space where variables live is called their scope

o \We will revisit this issue in the future

Examples

a=3 e aand b are two global
D=2 variables
def foo(x) :
return a+x e |n function foo:
def bar (x): _
b=1 ® a is global, its value
return b+x remains 3

orint (foo (3), bar (3)) ® Infunction bar:

® b is local, sincelitis
redefined to be 1

Preview of Scoping:
The global keyword

In the previous example, we generated a local variable b
by just assigning a value to it.

There are now two variables with name b
In bar, the global variable is hidden

If we want to assign to the global variable, then we can
use the keyword global to make b refer to the global
variable. An assignment then does not create a new local
variable, but rather changes the value of the old one.

Example

3 = 1 e |n foo:
b = 2 e A local variable b
* A global variable a

def fool():

global a * The value of a changes by executing

5 = 2 foo()

b = 3

print ("In foo:" , "a=", a, " b=", Db)
print ("Outside foo: " ,"a=", a, " b=", b)
foo ()
print ("Outside foo: " ,"a=", a, " b=", b)
##Outside foo: a= 1 b= 2
##In foo: a= 2 b= 3
##Outside foo: a= 2 b= 2

Scoping

e Scoping is definitely an advanced topic

e The take-home is:

e Don’t ever, ever use global variables

» Unless you really need to.

e Under most circumstances, you should pass variables as
arguments.

 Python Philosophy: Rules are followed by
convention, there is no enforcement

e Because sometimes you need to make exceptions

