
More on Functions
Thomas Schwarz, SJ

Marquette University

Functions of Functions
• Functions are full-fledged objects in Python

• This means you can pass functions as parameters

• Example: Calculate the average of the values of a function
at -n, -n+1, -n+2, …, -2, -1, 0, 1, 2, … , n-2, n-1, n

• The function needs to be a function of one integer
variable

• Example:

• n = 2, function is squaring

• Return value is ((−2)2 + (−1)2 + 02 + 12 + 22)/5 = 2

Functions of Functions
• We first define the averaging function with two arguments

• The number n

• The function over which we average, called func

def averaging(n, func):

Functions of Functions
• Inside the function, we create an accumulator and a loop

index, running from -n to n.

def averaging(n, func):
 accu = 0
 for i in range(-n, n+1):

Functions of Functions
• Inside the loop, we modify the accumulator accu by

adding the value of the function at the loop variable.

def averaging(n, func):
 accu = 0
 for i in range(-n, n+1):
 accu += func(i)

Functions of Functions
• There are 2n+1 points at which we evaluate the function.

• We then return the average as the accumulator over the
number of points

 def averaging(n, func):
 accu = 0
 for i in range(-n, n+1):
 accu += func(i)

return accu/(2*n+1)

Functions of Functions
• In order to try this out, we need to use a function

• We can just define one in order to try out our averaging
function

def square(number):
 return number*number

def averaging(n, func):
 accu = 0
 for i in range(-n, n+1):
 accu += func(i)
return accu/(2*n+1)

print(averaging(2, square))

Local and Global Variables
• A Python function is an independent part of a program

• It has its own set of variables

• Called local variables

• It can also access variables of the environment in which
the function is called.

• These are global variables

• The space where variables live is called their scope

• We will revisit this issue in the future

Examples
• a and b are two global

variables

• In function foo:

• a is global, its value
remains 3

• In function bar:

• b is local, since it is
redefined to be 1

a=3
b=2
def foo(x):
 return a+x
def bar(x):
 b=1
 return b+x

print(foo(3), bar(3))

Preview of Scoping:
The global keyword

• In the previous example, we generated a local variable b
by just assigning a value to it.

• There are now two variables with name b

• In bar, the global variable is hidden

• If we want to assign to the global variable, then we can
use the keyword global to make b refer to the global
variable. An assignment then does not create a new local
variable, but rather changes the value of the old one.

Example
• In foo:

• A local variable b

• A global variable a

• The value of a changes by executing
foo()

a = 1
b = 2

def foo():
 global a
 a = 2
 b = 3
 print("In foo:" , "a=", a, " b=", b)

print("Outside foo: " ,"a=", a, " b=", b)
foo()
print("Outside foo: " ,"a=", a, " b=", b)

##Outside foo: a= 1 b= 2
##In foo: a= 2 b= 3
##Outside foo: a= 2 b= 2

Scoping
• Scoping is definitely an advanced topic

• The take-home is:

• Don’t ever, ever use global variables

• Unless you really need to.

• Under most circumstances, you should pass variables as
arguments.

• Python Philosophy: Rules are followed by
convention, there is no enforcement

• Because sometimes you need to make exceptions

