
More on Dictionaries
Python

The Hungarian Phrase Book

A Teaser on Iterators
• Iterators are the hidden engine of many Python features

• Iterators are almost like lists

• You always can get the next element

• Unless you are at the end of a list

• But they are not lists:

• All the elements in the list have to be there before the list can
be used

• They need to be stored in memory

• Which uses up space

• And can be disastrous if there are just too many

A Teaser on Iterators
• Iterators are only created when there is a need

• Iterators are often hidden from view

• But we will have to use them

• For our purposes:

• We can make them explicitly into lists because we
are just not working with millions of data items

• But hopefully, once we get to play with the grown-
ups …

• Seriously, we get back to iterators

Multi-Dictionaries
• Problem:

• Instead of associating one value with a key, we want to
associate several values:

• a “multi-dictionary”

• Solution:

• The values of the dictionaries should be lists (or sets —
coming week)

Multi-Dictionaries
• Example:

• We want to pass through a file and create an index of
important words with their occurrences

with open("alice.txt", encoding = "latin-1") as infile:
 dicc = {}
 word_number = 0
 for line in infile:
 for word in line.split():
 word = word.strip(":,.?![]'")
 word = word.lower()

 word_number +=1
 if len(word)>8:
 if word in dicc:
 dicc[word].append(word_number)
 else:
 dicc[word]=[word_number]

Calculating on Values
• Assume you have a dictionary with numerical values

• For example: a dictionary with the prices of stocks on
September 15, 2018

• You want the average, the maximum, the minimum …
price

dstocks = {“tata”: 2063.30,
 “hdfc”: 2029.20,
 “hiul”: 1630.15,
 …

}

Solution
• You can access the values of a dictionary through the

values method.

• values() returns an iterator of all the values in the
dictionary

Calculating with keys
• Problem:

• You want to calculate on the keys of a dictionary

• Solution:

• The keys() method returns an iterator of the keys of a
dictionary

Finding the most common
item in a list

• We use a dictionary as a counter.

• First way: We can do so by ourselves.

• Create a dictionary

• Pass through the list

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1

get specifies a
default value,

it is otherwise equivalent to
counter[x]

Finding the most common
item in a list

• If we do not want to use get, we can just check whether
the list-item is already in the dictionary

def most_frequent(lista):
 counter = {}
 for x in lista:
 if x in counter:
 counter[x]+=1
 else:
 counter[x]=1

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

highest_seen contains the
highest encountered value

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

highest_seen is adjusted
whenever we see a higher

value in the counter

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

but we also need to
remember the key,

which we record in best_key

Finding the most common
item in a list

• After counting, we pass through the dictionary to find the
maximum element.

• Notice that we are interested in the key, not the value

def most_frequent(lista):
 counter = {}
 for x in lista:
 counter[x]=counter.get(x, 0)+1
 highest_seen = 0
 for x in counter:
 if counter[x]>highest_seen:
 best_key = x
 highest_seen = counter[x]
 return best_key

because the key with the
highest counter value is the

result that we return

Finding the most common
item in a list

• But we can also use the work of others

• The Counter in the collections module

• You create a new object of type Counter

from collections import Counter

def most_frequent(lista):
 ctr = Counter()

Defines a new
object called ctr
ctr is an object of

type Counter

Finding the most common
item in a list

• Counters are (updated) like dictionaries

• But they have a default value of 0

from collections import Counter

def most_frequent(lista):
 ctr = Counter()
 for item in lista:
 ctr[item] += 1

Here we add 1 to
the value of
ctr[item]

No need to initialize!

Finding the most common
item in a list

• Counters have a method called most_common

• Argument is the number of most common items

• Returns a list of pairs

from collections import Counter

def most_frequent(lista):
 ctr = Counter()
 for item in lista:
 ctr[item] += 1
 return ctr.most_common(1)[0][0]

• Get a list of one
elements.

• Get the first (and
only) element of the
list

• Get the first
coordinate of that
element

Memoization
• (Some) Computer Scientists love recursion

• A function calls itself

• This is super-elegant and the more mathematically
inclined pine for this elegance

• But it is not necessarily very fast

• The more engineeringly inclined think its a waste

Recursion
• When it works

• Factorials

• The factorial of n is n (n-1) (n-2) (n-3) … (4) (3) (2) (1)

• Define it to be one for negative or zero n

Recursion
• This implementation has the function factorial call itself

def factorial(number):
 if number<1:
 return 1
 else:
 return number*factorial(number-1)

• Here we are calling on the function itself

• Will call factorial(number-1), which will call
factorial(number-2), which will call factorial(number
-3) … until we call factorial on 1, in which case the
recursion stops.

Recursion
• This implementation has the function factorial call itself

def factorial(number):
 if number<1:
 return 1
 else:
 return number*factorial(number-1)

• The base case:

• We cannot call recursion infinitely often, so we
need one.

Recursion
• The Fibonacci numbers

• The Fibonacci numbers are defined recursively

• f0 = 0, f1 = 1, fn = fn−1 + fn−2

def fibonacci(number):
 if number <= 0:
 return 0
 if number == 1:
 return 1
 return fibonacci(number-1)+fibonacci(number-2)

Recursion
• But this implementation is inane!

• Takes too long even for small numbers.

• We can use the time-module in order to obtain the
cpu-time

• We do so once before and after execution of the
function

• This yields approximately the time it takes to execute
the function

Recursion
• We just write a function that measures the time

def measure(function, number):
 start = time.time()
 function(number)
 print(number, time.time()-start)

Recursion
• Now we try it out with factorial and fibonacci

• Not a problem with factorial
27 1.52587890625e-05
28 1.5974044799804688e-05
29 1.52587890625e-05
30 1.5735626220703125e-05
31 1.811981201171875e-05
32 1.71661376953125e-05
33 1.7881393432617188e-05
34 1.7881393432617188e-05
35 1.9073486328125e-05
36 1.9788742065429688e-05
37 1.8835067749023438e-05
38 2.09808349609375e-05
39 2.193450927734375e-05

Recursion
• But disastrous for Fibonacci

• It takes 34 seconds in order to calculate fibonacci(39).
28 0.17530512809753418
29 0.27112603187561035
30 0.43769311904907227
31 0.7113552093505859
32 1.1374599933624268
33 1.846013069152832
34 2.9945621490478516
35 4.856478929519653
36 7.85633397102356
37 12.681456804275513
38 20.59703803062439
39 33.98105502128601

Recursion
• What is the problem?

• Look at what happens if we calculate fibonacci(9).

• We calculate fibonacci(8) and fibonacci(7)

• Since the first one also calculates fibonacci(7), we
calculate fibonacci(7) twice.

• And it gets worse for fibonacci(6), fibonacci(5), …

fibonacci(8)

fibonacci(7)

fibonacci(6)fibonacci(6)

fibonacci(5) fibonacci(5)fibonacci(5)

fibonacci(4) fibonacci(4)fibonacci(4) fibonacci(4) fibonacci(4)

fibonacci(3)fibonacci(3) fibonacci(3)

Memoization
• A simple trick to speed up recursive functions is to

remember values that we have already calculated.

• Create a dictionary (possibly global) that stores values
already calculated

• Before any calculation check whether the desired value
is in the dictionary

• If we calculate something, we put the value into the
dictionary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

• Defining the dictionary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50) • Check whether value

is in the dictionary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50) • Calculation is

necessary

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

• But we store the result
in the dictionary in
case we use it in the
future

Memoization
fdic={0: 0, 1:1}

def fibonacci2(number):
 if number in fdic:
 return fdic[number]
 else:
 retval = fibonacci2(number-1)+fibonacci2(number-2)
 fdic[number] = retval
 return retval

for i in range(41):
 measure(fibonacci2, i*50)

• And now we measure

