
Preparation for
Midterm 2

Thomas Schwarz, SJ

Marquette University

String Processing
• String processing patterns

• Substituting in strings

• Use a dictionary to contain substitutions

File Processing
• File processing patterns

• Count the frequency for the beginning letter of a word

• Create a counter object

• Open file with “with”

• Use a for loop to go through every line

• Use split and a for loop to pass through every word

• Canonicalize the word

• Add word to counter

• Return the tablef

File Processing
import collections

def count_start_word(filename):
 ctr = collections.Counter()
 with open(filename, encoding="latin-1") as infile:
 for line in infile:
 for word in line.split():
 word = word.lower().strip(“[&(*,.;:'\"'`?!")
 if word: ##we could have stripped

 ##the word to nothing
 ctr[word[0]] += 1
 return ctr.most_common()

Test Yourself
• Alter the preceding code to find the frequencies of the last

letters in word

Test Yourself
• You just need to change the counter to count word[-1].

def count_end_word(filename):
 ctr = collections.Counter()
 with open(filename, encoding="latin-1") as infile:
 for line in infile:
 for word in line.split():
 word = word.lower().strip("[&(*,.;:'\"'`?!")
 if word: ##we could have stripped the word to
nothing
 ctr[word[-1]] += 1
 return ctr.most_common()

Memoization
• A more complicated example:

• How many stamps are needed to make various
postages

• Assume we have three types of stamps: ones, fours,
and fives

• To lick 27 cents, we can:

• five 5c + 2 1c stamps: total of 7 stamps

• four 5c, one 4c and 3 1c stamps: total of 8 stamps

• three 5c and three 4c stamps: total of six stamps

Memoization
• Given an amount n we want to calculate the minimum

number of stamps needed

• An inane method: Try out all possibilities

def inane(n):
 best_seen = n
 for ones in range(n+1):
 for fours in range(n+1):
 for fives in range(n+1):
 if ones*1+fours*4+fives*5 == n:
 if ones+fours+fives < best_seen:
 best_seen = ones+fours+fives
 return best_seen

Memoization
• Why is it inane?

• It takes iterations to try out all possibilities n × n × n

Memoization
• A better way?

• Given an amount n, we can try out the best ways to lick
n-5, n-4, and n-1, corresponding to deciding to first lick
a five cent, a four cent, and a one cent stamp

• Find the best among those three possibilities and add
one to it, because we already licked one stamp

• lick(n) = min(

0 if n = 0
1 + lick(n − 5) if n ≥ 5
1 + lick(n − 4) if n ≥ 4
1 + lick(n − 1) if n ≥ 1

)

Memoization
• This gives immediately a nice recursive implementation

def lick(amount):
 if amount == 0:
 return 0
 if amount < 4:
 return amount
 if amount == 4:
 return 1
 if amount == 5:
 return 1
 return min([lick(amount-1), lick(amount-4), lick(amount-5)])+1

Just some special base cases

Memoization
• But this recursive version is very slow

• That is because the same value link(x) can be
calculated many times

• So we put the intermediate results into a dictionary to
remember them

• This is called memoization

Memoization
• Memoization:

• Maintains a cache of intermediate results

• If the function is called on a value:

• We first check whether the value is in the cache

• Otherwise: we calculate it and put it into the cache

Memoization

lick_dictionary = {0:0, 1:1, 2:2, 3:3, 4:1, 5:1}

def mlick(amount):
 if amount in lick_dictionary:
 return lick_dictionary[amount]
 else:
 result = min([mlick(amount-1), mlick(amount-4), mlick(amount-5)])+1
 lick_dictionary[amount] = result
 return result

