Exception Handling

Thomas Schwarz, SJ
Marqguette University

Exceptions

e There are two approaches to living life as a religious:
* Before you do anything, you ask for permission
e Strengthens humility and denial of self
Do something and then ask for pardon

e Strengthens your Ego too much, but makes it easier on the superior

e Similarly: There are two approaches to the risks of live:
e Make sure you are prepared for anything

e Just live your life and deal with the consequences of your errors.

e |n programming, Python tends to fall squarely into the second category

e But it makes more sense than in real life

Exceptions

® RAISING AN EXCEPTION interrupts the flow of the
program

® HANDLING AN EXCEPTION puts the program flow back
on track or deals with an error situation

® Such as out of memory, file cannot be found, CPU
illegal instruction error, division by zero, overflow, ...

Python Philosoph

(T e o

Socrates scores, got a beautiful cros's. from y Hegel is arguing that thc'rﬁ;ti'i‘s’ merely,an
Archimedes. The Germans are disputing it. a priori adjunct of non-f‘utunllstk':FWcs.

e :
bk g
Kant, via the categorical imperative,
is holding that, ontologically, it exists =
only in the imagination. WA

And Marx is claiming it was offside.

Philosopher’s Football

e Handle the common case.

 And deal with the exceptions.

C, Java, C++ Philosophy

e (C: check before you assume

e Java, C++: Use exceptions to handle bad situations

e Python: Use exceptions for the not so ordinary

Python

e |f an instruction or block of instruction can cause an error,
put it in a try block.

try:

int (string)

Converts the string into
an integer

Notice that we are not using the result of the conversion,
we just attempt the conversion

Python Exceptions

 Then afterwards, handle the exception.

* You should, but are not required to specify the possible
offending exception

try:
int (string)
If the conversion fails, a except ValuekError:

ValueError is thrown . .
print (Y"Conversion error”)

This block handles the
exception

Python Exceptions

e How do you find which error is thrown:
e You can cause the error and see what type of error it is

e You can look it up

>>> 5/0
Traceback (most recent call last):
File "<pyshell#5>", line 1, 1n <module>
5/0
ZeroDivisionError: division by zero

Division by zero creates a
ZeroDivisionError

Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string):
try:
Try out the conversion 1nt (string)
return True
except:

return False

Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string):
try:
Try out the conversion 1nt (string)
return True
except:

return False

It worked:
We return True

Python Exceptions

e Putting things together: Testing whether a string
represents an integer

def 1s 1nt(string):

Try out the conversion

try:
int (string)
return True
except:
return False

It did NOT work:
An exception is thrown
We return FALSE

Python Exceptions

e As you can see from this example, the moment an
exception is thrown, we jump to the exception handler.

Python Exceptions

e When to use exceptions and when to use if

e Recall: Using if is defensive programming

* Recall: Using exceptions amounts to the same degree
of safety, but is offensive

e Rule of thumb:

* |f exceptions are raised infrequently, then use them

Python Exceptions

* |Let’s make some timing experiments

* Define two functions that square all elements in a list, if the
elements are integers.

def square list(lista):
result = []
for element 1n lista:
1f element.isdigit () :
result.append(int (element) **2)

def square listZ2(lista):
result = []
for element 1n lista:
try:
result.append(int (element) **2)
except:
pass

Python Exceptions

e The pass instruction:

e When Python expects a statement, but we don’t have
one:

e Just use pass

* The No-Operation instruction

Python Exceptions

e Recall how to use the time-module to obtain the CPU
(wall-clock) time

e \We use this to measure execution time

e First a list that only contains integers

def timeit (function, trials):
lista = [str(1) for 1 in range(1000000)]
count = 0
for 1n range(trials):
start = time.time ()
lista?2 = function(lista)
count += time.time () -start

return count/trials

Python Exceptions

e Result: Exceptions are somewhat faster

>>> timeit(square_list, 5)
0.6882429599761963

>>> timeit(square_list2, 5)
0.61?144681930542

Python Exceptions

e What if none of the list elements are integers:

def timeit (function, trials):
lista = ["a"+tstr (1) for 1 in range(1000000)]
count = 0
for 1n range(trials):
start = time.time ()
lista? = function(lista)
count += time.time()-start
return count/trials

>>> timeit(square_list, 5)
0.07187228202819824 Exceptions are
>>> timeit(square_list2, 5) much slower
1. 29|84710693359376

Python Exceptions

e \What about if the letter is at the end

def timeit (function, trials):
lista = [str(i)+"a" for 1 1in range (1000000)]
count = 0
for 1n range(trials):
start = time.time ()
lista?2 = function(lista)
count += time.time () -start

return count/trials

Exceptions are

>>> timeit(square_list, 5)
0.09337239265441895

>>> timeit(square_list2, 5)
1.3271790504455567

still much slower

Self Test

e Define a function that calculates the geometric mean of
two numbers.

e Use an exception to deal with a ValueError, arisen by
taking the square-root of a negative number

e Here is the if-version. We return None if there is no
mean.

def geo(x, y):
1f x*y > 0O:
return math.sqgrt (x*y)
return None

Self Test Solution

def geoe(x,V):
try:
return math.sqgrt (x*y)
except ValueError:
return None

Multiple Exceptions

e \We can write an exception handler that handles all the
exceptions

e This is discouraged since there are just too many
exceptions that can occur

e such as out-of-memory, system-error, keyboard-
interrupt ...

e |n this case, the except clause specifies no exception

try:
accum += 1/n No exception specified
except: Handler handles
print ("something bad happened”) everything

Multiple Exceptions

 Normally, you want to specify which exceptions you are
handling

* You can specify several exception handles by repeating the
exception clause

 Or you can handle a list of exceptions
The parentheses are

def test(): necessary

try:
f = open("none.txt")
block = f.read(256)
except IOError:
print ("something happened when reading the file")
except EOFError:
print ("ran out of file")
except (KeyboardInterrupt, ValueError):
print ("something strange happened")

Cleaning Up

e Sometimes you need to make sure that failure-prone
code cleans up

e Usethe finally clause

e (Guaranteed to be executed
e Even with return statements

* Even when exceptions are raised

Example for £inally clause

e |f we open a file without the if-clause, we are morally
obliged to close it

e |et’s say, if you have a long-running process that only
needs a file for a little time, you should not hog the file
and prevent others from accessing it.

Example for :

def harmonic (filename) :
Assumes that the elements in
We return the harmonic mean

mwriw

count = 0
accumulator = 0
try:
infile = open(filename,

for line in infile:
for words in line.sp
accumulator += 1
count += 1
return count/accumulator
except ZeroDivisionError:
print ("saw a zero")
return 1000000000
except ValueError:
print ("saw a non-integer
return O
finally:
print ("I am done and clo
infile.close ()

"inally clause

the file are numbers.
of the numbers.

Return in the try block

encoding="utf-8")

1it () :

. _ Return in the handler
/int (wo—ds)

But finally is
guaranteed to run
before any of the

")
returns

sing the file")

Raising exceptions

e You can also raise your own exception

e You can even define your own exceptions when you
have understood classes

e Justsay: raise ValueError

* or whatever the exception is that you want to raise.

Self Test

e Recall that the finally clause is always executed.

e What is the output of the following code

def raising():
try:
ralse ValueError
except ValueError:
return 0
finally:
return 1

Answer

e The functions returns 1

e The exception is raised and control passes to the
exception handler

e Before the exception handler can return, the finally
clause is executed

e And that one returns 1

